zoukankan      html  css  js  c++  java
  • LC 835. Image Overlap

    Two images A and B are given, represented as binary, square matrices of the same size.  (A binary matrix has only 0s and 1s as values.)

    We translate one image however we choose (sliding it left, right, up, or down any number of units), and place it on top of the other image.  After, the overlap of this translation is the number of positions that have a 1 in both images.

    (Note also that a translation does not include any kind of rotation.)

    What is the largest possible overlap?

    Example 1:

    Input: A = [[1,1,0],
                [0,1,0],
                [0,1,0]]
           B = [[0,0,0],
                [0,1,1],
                [0,0,1]]
    Output: 3
    Explanation: We slide A to right by 1 unit and down by 1 unit.

    Notes: 

    1. 1 <= A.length = A[0].length = B.length = B[0].length <= 30
    2. 0 <= A[i][j], B[i][j] <= 1

    Runtime: 103 ms, faster than 42.68% of Java online submissions for Image Overlap.

    注意,求两个点的向量差值,唯一表示要把坐标分开来,

    这一题中,坐标小于30,所以La,Lb中add了i/N * 100 + i% N, i/N 和 i % N分别是横纵坐标。

    最后的表示是一个4位数,xxxx。前两位是横坐标,后两位是纵坐标。

    class Solution {
    
        public int largestOverlap(int[][] A, int[][] B){
        int N = A.length;
        List<Integer> La = new ArrayList<>();
        List<Integer> Lb = new ArrayList<>();
        HashMap<Integer, Integer> dist = new HashMap<>();
        for(int i=0; i<N*N; i++) if(A[i/N][i%N] == 1) La.add(i/N*100 + i%N);
        for(int j=0; j<N*N; j++) if(B[j/N][j%N] == 1) Lb.add(j/N*100 + j%N);
        for(int i : La){
          for(int j : Lb){
            dist.put(i - j, dist.getOrDefault(i-j, 0) + 1);
          }
        }
        int ret = 0;
        for(int i : dist.values()) ret = Math.max(i, ret);
        return ret;
      }
    }
  • 相关阅读:
    数据加密标准(DES)详解(附源码)
    《ProGit》阅读笔记
    版本管理——Git和SVN的介绍及其优缺点
    jQuery-动画
    ajax与jsonp中的几个封装函数
    关于ajax
    js基础——数组的概念及其方法
    js实现放烟花效果——点击处会从下向上升起烟花
    js实现——鼠标移动时跟随着一连的小图片
    BFC的作用及其应用
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10256336.html
Copyright © 2011-2022 走看看