What is a Thread?
线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位,一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。
在同一个进程内的线程的数据是可以进行互相访问的。
线程的切换使用过上下文来实现的,比如有一本书,有a和b这两个人(两个线程)看,a看完之后记录当前看到那一页哪一行,然后交给b看,b看完之后记录当前看到了那一页哪一行,此时a又要看了,那么a就通过上次记录的值(上下文)直接找到上次看到了哪里,然后继续往下看。
What is a Process?
一个进程至少要包含一个线程,每个进程在启动的时候就会自动的启动一个线程,进程里面的第一个线程就是主线程,每次在进程内创建的子线程都是由主线程进程创建和销毁,子线程也可以由主线程创建出来的线程创建和销毁线程。
进程是对各种资源管理的集合,比如要调用内存、CPU、网卡、声卡等,进程要操作上述的硬件之前都必须要创建一个线程,进程里面可以包含多个线程,QQ就是一个进程。
继续拿QQ来说,比如我现在打卡了QQ的聊天窗口、个人信息窗口、设置窗口等,那么每一个打开的窗口都是一个线程,他们都在执行不同的任务,比如聊天窗口这个线程可以和好友进行互动,聊天,视频等,个人信息窗口我可以查看、修改自己的资料。
为了进程安全起见,所以两个进程之间的数据是不能够互相访问的(默认情况下),比如自己写了一个应用程序,然后让别人运行起来,那么我的这个程序就可以访问用户启动的其他应用,我可以通过我自己的程序去访问QQ,然后拿到一些聊天记录等比较隐秘的信息,那么这个时候就不安全了,所以说进程与进程之间的数据是不可以互相访问的,而且每一个进程的内存是独立的。
进程与线程的区别?
- 线程是执行的指令集,进程是资源的集合
- 线程的启动速度要比进程的启动速度要快
- 两个线程的执行速度是一样的
- 进程与线程的运行速度是没有可比性的
- 线程共享创建它的进程的内存空间,进程的内存是独立的。
- 两个线程共享的数据都是同一份数据,两个子进程的数据不是共享的,而且数据是独立的;
- 同一个进程的线程之间可以直接交流,同一个主进程的多个子进程之间是不可以进行交流,如果两个进程之间需要通信,就必须要通过一个中间代理来实现;
- 一个新的线程很容易被创建,一个新的进程创建需要对父进程进行一次克隆
- 一个线程可以控制和操作同一个进程里的其他线程,线程与线程之间没有隶属关系,但是进程只能操作子进程
- 改变主线程,有可能会影响到其他线程的行为,但是对于父进程的修改是不会影响子进程;
一个多并发的小脚本
import threading
import time
def Princ(String):
print('task', String)
time.sleep(5)
# target=目标函数, args=传入的参数
t1 = threading.Thread(target=Princ, args=('t1',))
t1.start()
t2 = threading.Thread(target=Princ, args=('t1',))
t2.start()
t3 = threading.Thread(target=Princ, args=('t1',))
t3.start()
参考文档
进程与线程的一个简单解释 http://www.ruanyifeng.com/blog/2013/04/processes_and_threads.html Linux进程与线程的区别 https://my.oschina.net/cnyinlinux/blog/422207
线程
Thread module emulating a subset of Java’s threading model.
调用threading模块调用线程的两种方式
直接调用
import threading
import time
def Princ(String):
print('task', String)
time.sleep(5)
# target=目标函数, args=传入的参数
t1 = threading.Thread(target=Princ, args=('t1',))
t1.start()
t2 = threading.Thread(target=Princ, args=('t1',))
t2.start()
t3 = threading.Thread(target=Princ, args=('t1',))
t3.start()
通过类调用
import threading
import time
class MyThreading(threading.Thread):
def __init__(self, conn):
super(MyThreading, self).__init__()
self.conn = conn
def run(self):
print('run task', self.conn)
time.sleep(5)
t1 = MyThreading('t1')
t2 = MyThreading('t2')
t1.start()
t2.start()
多线程
多线程在Python内实则就是一个假象,为什么这么说呢,因为CPU的处理速度是很快的,所以我们看起来以一个线程在执行多个任务,每个任务的执行速度是非常之快的,利用上下文切换来快速的切换任务,以至于我们根本感觉不到。
但是频繁的使用上下文切换也是要耗费一定的资源,因为单线程在每次切换任务的时候需要保存当前任务的上下文。
什么时候用到多线程?
首先IO操作是不占用CPU的,只有计算的时候才会占用CPU(譬如1+1=2),Python中的多线程不适合CPU密集型的任务,适合IO密集型的任务(sockt server)。
启动多个线程
主进程在启动之后会启动一个主线程,下面的脚本中让主线程启动了多个子线程,然而启动的子线程是独立的,所以主线程不会等待子线程执行完毕,而是主线程继续往下执行,并行执行。
for i in range(50):
t = threading.Thread(target=Princ, args=('t-%s' % (i),))
t.start()
join()
join()
方法可以让程序等待每一个线程之后完成之后再往下执行,又成为串行执行。
import threading
import time
def Princ(String):
print('task', String)
time.sleep(1)
for i in range(50):
t = threading.Thread(target=Princ, args=('t-%s' % (i),))
t.start()
# 当前线程执行完毕之后在执行后面的线程
t.join()
让主线程阻塞,子现在并行执行
import threading
import time
def Princ(String):
print('task', String)
time.sleep(2)
# 执行子线程的时间
start_time = time.time()
# 存放线程的实例
t_objs = []
for i in range(50):
t = threading.Thread(target=Princ, args=('t-%s' % (i),))
t.start()
# 为了不让后面的子线程阻塞,把当前的子线程放入到一个列表中
t_objs.append(t)
# 循环所有子线程实例,等待所有子线程执行完毕
for t in t_objs:
t.join()
# 当前时间减去开始时间就等于执行的过程中需要的时间
print(time.time() - start_time)
查看主线程与子线程
import threading
class MyThreading(threading.Thread):
def __init__(self):
super(MyThreading, self).__init__()
def run(self):
print('我是子线程: ', threading.current_thread())
t = MyThreading()
t.start()
print('我是主线程: ', threading.current_thread())
输出如下:
我是子线程: <MyThreading(Thread-1, started 7724)>
我是主线程: <_MainThread(MainThread, started 3680)>
Process finished with exit code 0
查看当前进程的活动线程个数
import threading
class MyThreading(threading.Thread):
def __init__(self):
super(MyThreading, self).__init__()
def run(self):
print('www.baidu.com')
t = MyThreading()
t.start()
print('线程个数: ', threading.active_count())
输出如下:
www.baidu.com
# 一个主线程和一个子线程
线程个数: 2
Process finished with exit code 0
Event
Event是线程间通信最间的机制之一:一个线程发送一个event信号,其他的线程则等待这个信号。用于主线程控制其他线程的执行。 Events 管理一个flag,这个flag可以使用set ()设置成True或者使用clear()重置为False,wait()则用于阻塞,在flag为True之前。flag默认为False。
选项 | 描述 |
---|---|
Event.wait([timeout]) |
堵塞线程,直到Event对象内部标识位被设为True或超时(如果提供了参数timeout) |
Event.set() |
将标识位设为Ture |
Event.clear() |
将标识伴设为False |
Event.isSet() |
判断标识位是否为Ture |
#!/use/bin/env python
# _*_ coding: utf-8- _*_
import threading
def runthreading(event):
print("Start...")
event.wait()
print("End...")
event_obj = threading.Event()
for n in range(10):
t = threading.Thread(target=runthreading, args=(event_obj,))
t.start()
event_obj.clear()
inp = input("True/False?>> ")
if inp == "True":
event_obj.set()
守护进程(守护线程)
一个主进程可以启动多个守护进程,但是主进程必须要一直运行,如果主进程挂掉了,那么守护进程也会随之挂掉
程序会等待主线程(进程)执行完毕,但是不会等待守护进程(线程)
import threading
import time
def Princ(String):
print('task', String)
time.sleep(2)
for i in range(50):
t = threading.Thread(target=Princ, args=('t-%s' % (i),))
t.setDaemon(True) # 把当前线程设置为守护线程,要在start之前设置
t.start()
场景预设: 比如现在有一个FTP服务,每一个用户连接上去的时候都会创建一个守护线程,现在已经有300个用户连接上去了,就是说已经创建了300个守护线程,但是突然之间FTP服务宕掉了,这个时候就不会等待守护线程执行完毕再退出,而是直接退出,如果是普通的线程,那么就会登台线程执行完毕再退出。
#!/use/bin/env python
# _*_ coding:utf-8 _*_
from multiprocessing import Process
import time
def runprocess(arg):
print(arg)
time.sleep(2)
p = Process(target=runprocess, args=(11,))
p.daemon=True
p.start()
print("end")
线程之间的数据交互与锁(互斥锁)
python2.x
需要加锁,但是在python3.x
上面就不需要了
# _*_ coding:utf-8 _*_
import threading
def Princ():
# 获取锁
lock.acquire()
# 在函数内可以直接修改全局变量
global number
number += 1
# 为了避免让程序出现串行,不能加sleep
# time.sleep(1)
# 释放锁
lock.release()
# 锁
lock = threading.Lock()
# 主线程的number
number = 0
t_objs = []
for i in range(100):
t = threading.Thread(target=Princ)
t.start()
t_objs.append(t)
for t in t_objs:
t.join()
print('Number:', number)
递归锁(Lock/RLock)
import threading
def run1():
print("grab the first part data")
lock.acquire()
global num
num += 1
lock.release()
return num
def run2():
print("grab the second part data")
lock.acquire()
global num2
num2 += 1
lock.release()
return num2
def run3():
lock.acquire()
res = run1()
print('--------between run1 and run2-----')
res2 = run2()
lock.release()
print(res, res2)
t_objs = []
if __name__ == '__main__':
num, num2 = 0, 0
lock = threading.RLock() # RLock()类似创建了一个字典,每次退出的时候找到字典的值进行退出
# lock = threading.Lock() # Lock()会阻塞在这儿
for i in range(10):
t = threading.Thread(target=run3)
t.start()
t_objs.append(t)
for t in t_objs:
t.join()
print(num, num2)
信号量(Semaphore)
互斥锁
同时只允许一个线程更改数据,而Semaphore
是同时允许一定数量的线程更改数据
import threading
import time
def run(n):
semaphore.acquire() # 获取信号,信号可以有多把锁
time.sleep(1) # 等待一秒钟
print("run the thread: %s
" % n)
semaphore.release() # 释放信号
t_objs = []
if __name__ == '__main__':
semaphore = threading.BoundedSemaphore(5) # 声明一个信号量,最多允许5个线程同时运行
for i in range(20): # 运行20个线程
t = threading.Thread(target=run, args=(i,)) # 创建线程
t.start() # 启动线程
t_objs.append(t)
for t in t_objs:
t.join()
print('>>>>>>>>>>>>>')
以上代码中,类似与创建了一个队列,最多放5个任务,每执行完成一个任务就会往后面增加一个任务。
多进程
多进程的资源是独立的,不可以互相访问。
启动一个进程
from multiprocessing import Process
import time
def f(name):
time.sleep(2)
print('hello', name)
if __name__ == '__main__':
# 创建一个进程
p = Process(target=f, args=('bob',))
# 启动
p.start()
# 等待进程执行完毕
p.join()
在进程内启动一个线程
from multiprocessing import Process
import threading
def Thread(String):
print(String)
def Proces(String):
print('hello', String)
t = threading.Thread(target=Thread, args=('Thread %s' % (String),)) # 创建一个线程
t.start() # 启动它
if __name__ == '__main__':
p = Process(target=Proces, args=('World',)) # 创建一个进程
p.start() # 启动
p.join() # 等待进程执行完毕
启动一个多进程
from multiprocessing import Process
import time
def f(name):
time.sleep(2)
print('hello', name)
if __name__ == '__main__':
for n in range(10): # 创建一个进程
p = Process(target=f, args=('bob %s' % (n),))
# 启动
p.start()
# 等待进程执行完毕
获取启动进程的PID
# _*_ coding:utf-8 _*_
from multiprocessing import Process
import os
def info(String):
print(String)
print('module name:', __name__)
print('父进程的PID:', os.getppid())
print('子进程的PID:', os.getpid())
print("
")
def ChildProcess():
info('