【题目链接】
【算法】
floyd求最小环
输出路径的方法如下,对于i到j的最短路,我们记pre[i][j]表示j的上一步
在进行松弛操作的时候更新pre即可
【代码】
#include <algorithm> #include <bitset> #include <cctype> #include <cerrno> #include <clocale> #include <cmath> #include <complex> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <exception> #include <fstream> #include <functional> #include <limits> #include <list> #include <map> #include <iomanip> #include <ios> #include <iosfwd> #include <iostream> #include <istream> #include <ostream> #include <queue> #include <set> #include <sstream> #include <stdexcept> #include <streambuf> #include <string> #include <utility> #include <vector> #include <cwchar> #include <cwctype> #include <stack> #include <limits.h> using namespace std; #define MAXN 110 const int INF = 1e8; int n,m; int g[MAXN][MAXN],mp[MAXN][MAXN],pre[MAXN][MAXN]; inline void solve() { int ans = INF; vector< int > res; for (int k = 1; k <= n; k++) { for (int i = 1; i < k; i++) { for (int j = i + 1; j < k; j++) { if (g[i][j] + mp[j][k] + mp[k][i] < ans) { ans = g[i][j] + mp[j][k] + mp[k][i]; res.clear(); int tmp = j; while (tmp != i) { res.push_back(tmp); tmp = pre[i][tmp]; } res.push_back(i); res.push_back(k); } } } for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { if (g[i][k] + g[k][j] < g[i][j]) { g[i][j] = g[i][k] + g[k][j]; pre[i][j] = pre[k][j]; } } } } if (ans == INF) { puts("No solution."); return; } for (int i = 0; i < res.size() - 1; i++) printf("%d ",res[i]); printf("%d ",res[res.size()-1]); } int main() { scanf("%d%d",&n,&m); for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { g[i][j] = mp[i][j] = INF; pre[i][j] = i; } } for (int i = 1; i <= m; i++) { int u,v,w; scanf("%d%d%d",&u,&v,&w); if (w < g[u][v]) g[u][v] = mp[u][v] = g[v][u] = mp[v][u] = w; } solve(); return 0; }