题目链接 :
【POJ】点击打开链接
【caioj】点击打开链接
算法 :
1:跑一遍弗洛伊德,求出点与点之间的最短路径
2:二分答案,二分”最大值最小“
3.1:建边,将原点与每头奶牛连边,流量为1,记dist[i][j]为i到j的最短路径,若dist[i][j]<=mid (K+1<=i<=K+C,1<=j<=K),则将i与j连边,流量为M,将每台挤奶机与汇点连边,流量为1
3.2 : 跑网络流,这里笔者使用的是dinic算法
3.3 : 判断最大流S是否等于K,等于K,则往小搜,否则往大搜
代码 :
#include <algorithm> #include <bitset> #include <cctype> #include <cerrno> #include <clocale> #include <cmath> #include <complex> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <exception> #include <fstream> #include <functional> #include <limits> #include <list> #include <map> #include <iomanip> #include <ios> #include <iosfwd> #include <iostream> #include <istream> #include <ostream> #include <queue> #include <set> #include <sstream> #include <stdexcept> #include <streambuf> #include <string> #include <utility> #include <vector> #include <cwchar> #include <cwctype> #include <stack> #include <limits.h> using namespace std; #define MAXK 30 #define MAXC 200 #define MAXM 15 typedef long long LL; LL i,j,low,high,mid,st,ed,K,C,M,tot,ans; LL h[MAXK+MAXC+10],dist[MAXK+MAXC+10][MAXK+MAXC+10], U[MAXC*100+10],V[MAXC*100+10],W[MAXC*100+10],Head[MAXC*100+10], Next[MAXC*100+10],other[MAXC*100+10]; template <typename T> inline void read(T &x) { LL f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) { if (c=='-') f = -f; } for (; isdigit(c); c = getchar()) x=x*10+c-'0'; x*=f; } template <typename T> inline void write(T x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) write(x/10); putchar(x % 10 + '0'); } template <typename T> inline void writeln(T x) { write(x); puts(""); } inline void floyed() { LL i,j,k; for (k = 1; k <= K + C; k++) { for (i = 1; i <= K + C; i++) { if (i == k) continue; for (j = 1; j <= K + C; j++) { if ((k == j) || (i == j)) continue; dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]); } } } } inline void add(LL a,LL b,LL c) { ++tot; U[tot] = a; V[tot] = b; W[tot] = c; Next[tot] = Head[a]; Head[a] = tot; other[tot] = ++tot; U[tot] = b; V[tot] = a; W[tot] = 0; Next[tot] = Head[b]; Head[b] = tot; other[tot] = tot - 1; } inline bool BFS() { LL i,x,y; queue<LL> q; memset(h,0,sizeof(h)); h[st] = 1; q.push(st); while (!q.empty()) { x = q.front(); q.pop(); for (i = Head[x]; i; i = Next[i]) { y = V[i]; if ((W[i] > 0) && (!h[y])) { h[y] = h[x] + 1; q.push(y); } } } if (h[ed]) return true; else return false; } inline LL maxflow(LL x,LL f) { LL i,t,y,sum=0; if (x == ed) return f; for (i = Head[x]; i; i = Next[i]) { y = V[i]; if ((W[i] > 0) && (h[y] == h[x] + 1) && (sum < f)) { sum += (t = maxflow(y,min(W[i],f-sum))); W[i] -= t; W[other[i]] += t; } } if (!sum) h[x] = 0; return sum; } inline bool check(LL ml) { LL i,j,sum=0; tot = 0; memset(Head,0,sizeof(Head)); for (i = K + 1; i <= K + C; i++) { for (j = 1; j <= K; j++) { if (dist[i][j] <= ml) add(i,j,1); } } for (i = K + 1; i <= K + C; i++) add(st,i,1); for (i = 1; i <= K; i++) add(i,ed,M); while (BFS()) { sum += maxflow(st,C); } return sum == C; } int main() { read(K); read(C); read(M); st = K + C + 1; ed = st + 1; for (i = 1; i <= K + C; i++) { for (j = 1; j <= K + C; j++) { read(dist[i][j]); if (!dist[i][j]) dist[i][j] = 2e9; } } floyed(); for (i = K + 1; i <= K + C; i++) { for (j = 1; j <= K; j++) { if (dist[i][j] != 2e9) high = max(high,dist[i][j]); } } low = 1; while (low <= high) { mid = (low + high) >> 1; if (check(mid)) { high = mid - 1; ans = mid; } else low = mid + 1; } writeln(ans); return 0; }