zoukankan      html  css  js  c++  java
  • 【USACO】Optimal Milking

    题目链接 :

           【POJ】点击打开链接

           【caioj】点击打开链接

    算法 :

    1:跑一遍弗洛伊德,求出点与点之间的最短路径

    2:二分答案,二分”最大值最小“

    3.1:建边,将原点与每头奶牛连边,流量为1,记dist[i][j]为i到j的最短路径,若dist[i][j]<=mid (K+1<=i<=K+C,1<=j<=K),则将i与j连边,流量为M,将每台挤奶机与汇点连边,流量为1

    3.2 : 跑网络流,这里笔者使用的是dinic算法

    3.3 : 判断最大流S是否等于K,等于K,则往小搜,否则往大搜

    代码 :

    #include <algorithm>
    #include <bitset>
    #include <cctype>
    #include <cerrno>
    #include <clocale>
    #include <cmath>
    #include <complex>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <ctime>
    #include <deque>
    #include <exception>
    #include <fstream>
    #include <functional>
    #include <limits>
    #include <list>
    #include <map>
    #include <iomanip>
    #include <ios>
    #include <iosfwd>
    #include <iostream>
    #include <istream>
    #include <ostream>
    #include <queue>
    #include <set>
    #include <sstream>
    #include <stdexcept>
    #include <streambuf>
    #include <string>
    #include <utility>
    #include <vector>
    #include <cwchar>
    #include <cwctype>
    #include <stack>
    #include <limits.h>
    using namespace std;
    #define MAXK 30
    #define MAXC 200
    #define MAXM 15
    
    typedef long long LL;
    
    LL i,j,low,high,mid,st,ed,K,C,M,tot,ans;
    LL h[MAXK+MAXC+10],dist[MAXK+MAXC+10][MAXK+MAXC+10],
         U[MAXC*100+10],V[MAXC*100+10],W[MAXC*100+10],Head[MAXC*100+10],
         Next[MAXC*100+10],other[MAXC*100+10];
            
    template <typename T> inline void read(T &x) {
            LL f = 1; x = 0;
            char c = getchar(); 
            for (; !isdigit(c); c = getchar()) { if (c=='-') f = -f; }
            for (; isdigit(c); c = getchar()) x=x*10+c-'0';
            x*=f;
    }
    
    template <typename T> inline void write(T x) {
            if (x < 0) { putchar('-'); x = -x; }
            if (x > 9) write(x/10);
            putchar(x % 10 + '0');    
    }
    
    template <typename T> inline void writeln(T x) {
            write(x);
            puts("");    
    }
    
    inline void floyed() {
            LL i,j,k;
            for (k = 1; k <= K + C; k++) {
                  for (i = 1; i <= K + C; i++) {
                            if (i == k) continue;
                            for (j = 1; j <= K + C; j++) {
                                    if ((k == j) || (i == j)) continue;
                                    dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]);                            
                            }    
                    }
            }        
    }
    
    inline void add(LL a,LL b,LL c) {
            ++tot;
            U[tot] = a; V[tot] = b; W[tot] = c;
            Next[tot] = Head[a]; Head[a] = tot; 
            other[tot] = ++tot;
            U[tot] = b; V[tot] = a; W[tot] = 0;
            Next[tot] = Head[b]; Head[b] = tot;
            other[tot] = tot - 1;    
    }
    
    inline bool BFS() {
            LL i,x,y;
            queue<LL> q;
            memset(h,0,sizeof(h));
            h[st] = 1; q.push(st);
            while (!q.empty()) {
                    x = q.front(); q.pop();
                    for (i = Head[x]; i; i = Next[i]) {
                            y = V[i];
                            if ((W[i] > 0) && (!h[y])) {
                                    h[y] = h[x] + 1;
                                    q.push(y);
                            }
                    }
            }
            if (h[ed]) return true;
            else return false;
    }
    
    inline LL maxflow(LL x,LL f) {
            LL i,t,y,sum=0;
            if (x == ed) return f;
            for (i = Head[x]; i; i = Next[i]) {
                    y = V[i];
                    if ((W[i] > 0) && (h[y] == h[x] + 1) && (sum < f)) {
                            sum += (t = maxflow(y,min(W[i],f-sum)));
                            W[i] -= t; W[other[i]] += t;
                    }     
            }    
            if (!sum) h[x] = 0;
            return sum;
    }
    
    inline bool check(LL ml) {
            LL i,j,sum=0;
            tot = 0;
            memset(Head,0,sizeof(Head));
            for (i = K + 1; i <= K + C; i++) {
                    for (j = 1; j <= K; j++) {
                            if (dist[i][j] <= ml)
                                    add(i,j,1);
                    }
            }    
            for (i = K + 1; i <= K + C; i++) add(st,i,1); 
            for (i = 1; i <= K; i++) add(i,ed,M);
            while (BFS()) {
                    sum += maxflow(st,C);
            }
            return sum == C;
    }
    
    int main() {
            
            read(K); read(C); read(M);
            st = K + C + 1; ed = st + 1;
            
            for (i = 1; i <= K + C; i++) {
                    for (j = 1; j <= K + C; j++) {
                            read(dist[i][j]);
                            if (!dist[i][j]) dist[i][j] = 2e9;
                    }    
            }    
            
            floyed();
            
            for (i = K + 1; i <= K + C; i++) {
                    for (j = 1; j <= K; j++) {
                            if (dist[i][j] != 2e9)
                                    high = max(high,dist[i][j]);
                    }    
            }    
            
            low = 1; 
            
            while (low <= high) {
                    mid = (low + high) >> 1;
                    if (check(mid)) {
                            high = mid - 1;
                            ans = mid;
                    }    else
                            low = mid + 1;
            }
            writeln(ans);
            
            return 0;
        
    }
  • 相关阅读:
    订单模块
    69.Sqrt(x)
    28.Implement strStr()---kmp
    26.Remove Duplicates from Sorted Array
    27.Remove Element---两指针
    支付模块
    Oracle维护:每天的工作
    Oracle Hint
    latch相关视图整理
    oracle常用视图介绍
  • 原文地址:https://www.cnblogs.com/evenbao/p/9196444.html
Copyright © 2011-2022 走看看