[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=5142
[算法]
首先用RMQ预处理S数组的最大值
然后我们枚举右端点 , 通过二分求出合法的 , 最靠右的左端点 , 用这段区间的最大值更新答案 , 即可
时间复杂度 : O(NlogN)
[代码]
#include<bits/stdc++.h> using namespace std; typedef long long LL; const int MAXN = 1e5 + 10; const int MAXLOG = 20; const LL INF = 1e18; int n; LL m; LL value[MAXN][MAXLOG]; LL F[MAXN] , S[MAXN]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); } template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); } template <typename T> inline void read(T &x) { T f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0'; x *= f; } inline LL query(int l,int r) { int k = (int)((double)log(r - l + 1) / log(2.0)); return max(value[l][k] , value[r - (1 << k) + 1][k]); } int main() { read(n); read(m); for (int i = 1; i <= n; i++) { read(F[i]); read(S[i]); value[i][0] = S[i]; } for (int i = 1; i <= n; i++) F[i] += F[i - 1]; for (int i = 1; i < MAXLOG; i++) { for (int j = 1; j + (1 << i) - 1 <= n; j++) { value[j][i] = max(value[j][i - 1],value[j + (1 << (i - 1))][i - 1]); } } LL ans = INF; for (int i = 1; i <= n; i++) { int l = 1 , r = i , pos = -1; while (l <= r) { int mid = (l + r) >> 1; if (F[i] - F[mid - 1] >= m) { pos = mid; l = mid + 1; } else r = mid - 1; } if (pos == -1) continue; chkmin(ans,query(pos,i)); } printf("%lld ",ans); return 0; }