[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=3436
[算法]
不难发现 , 题目中的约束条件都可以写成
1. Da - Db >= c
2. Da - Db <= c
3. Da = Db
考虑使用差分约束系统
第一种约束条件 :将b向a连一条权值为c的有向边
第二种约束条件 :将a向b连一条权值为-c的有向边
第三种约束条件 : 将a向b连一条权值为0的有向边 , 将b向a连一条权值为0的有向边
然后 , 我们只需判断该图中是否存在正环 , SPFA判定即可 , 注意使用SPFA的DFS形式
时间复杂度 : O(N ^ 2)
[代码]
#include<bits/stdc++.h> using namespace std; #define MAXN 100010 const int inf = 2e9; struct edge { int to , w , nxt; } e[MAXN << 1]; int tot , n , m; bool inq[MAXN]; int dist[MAXN] , head[MAXN]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); } template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); } template <typename T> inline void read(T &x) { T f = 1; x = 0; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0'; x *= f; } inline void addedge(int u , int v , int w) { ++tot; e[tot] = (edge){v , w , head[u]}; head[u] = tot; } inline bool spfa(int u) { inq[u] = true; for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to , w = e[i].w; if (dist[u] + w > dist[v]) { dist[v] = dist[u] + w; if (inq[v]) return true; if (spfa(v)) return true; } } inq[u] = false; return false; } int main() { read(n); read(m); for (int i = 1; i <= m; i++) { int type; read(type); if (type == 1) { int a , b , c; read(a); read(b); read(c); // d[a] - d[b] >= c addedge(b , a , c); } else if (type == 2) { int a , b , c; read(a); read(b); read(c); // d[a] - d[b] <= c addedge(a , b , -c); } else { int a , b; read(a); read(b); // d[a] - d[b] >= 0 , d[b] - d[a] >= 0 addedge(b , a , 0); addedge(a , b , 0); } } for (int i = 1; i <= n; i++) { dist[i] = -inf; addedge(0 , i , 0); } if (!spfa(0)) printf("Yes "); else printf("No "); return 0; }