zoukankan      html  css  js  c++  java
  • hdu5528

    定义(f(n)=)选两个([0,n))的整数(a,b),且(ab)不是(n)的倍数的方案数。

    (g(n) = sum_{d|n}f(d))

    (Tleq20000,nleq10^9)

    解答如下:((a,b))(gcd(a,b))

    [f(n) = n^2-sum_asum_b[n|ab]\=n^2-sum_asum_b[frac{n}{(a,n)}|b]\=n^2-sum_asum_b[frac{n}{a}|b]sum_d[d=(a,n)]\=n^2-sum_asum_d[d=(a,n)]sum_b[frac{n}{d}|b]\=n^2-sum_{d|n}sum^{n/d}_{a=1}[1=(a,frac{n}{d})]sum_b[frac{n}{d}|b]\=n^2-sum_{d|n}sum^{n/d}_{a=1}[1=(a,frac{n}{d})]sum_b[frac{n}{d}|b]\=n^2-sum_{d|n}varphi(frac{n}{d})sum_b[frac{n}{d}|b]\=n^2-sum_{d|n}varphi(d)sum_b{[d|b]}\=n^2-sum_{d|n}varphi(d)frac{n}{d}\g(n)=sum_{d|n}f(d)\=sum_{d|n}d^2-sum_{d|n}sum_{k|d}varphi(k)frac{d}{k} ]

    前式很简单,后式是(varphi * id * 1=id*id)

    两个值均为积性函数,预处理素因子,合并答案即可

    #define B cout << "BreakPoint" << endl;
    #define O(x) cout << #x << " " << x << endl;
    #define O_(x) cout << #x << " " << x << " ";
    #define Msz(x) cout << "Sizeof " << #x << " " << sizeof(x)/1024/1024 << " MB" << endl;
    #include<cstdio>
    #include<cmath>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<set>
    #define LL long long
    const LL inf = 1e9 + 9;
    const int N = 1e6 + 5;
    using namespace std;
    inline LL read() {
    	LL s = 0,w = 1;
    	char ch = getchar();
    	while(ch < '0' || ch > '9') {
    		if(ch == '-')
    			w = -1;
    		ch = getchar();
    	}
    	while(ch >= '0' && ch <= '9') {
    		s = s * 10 + ch - '0';
    		ch = getchar();
    	}
    	return s * w;
    }
    inline void write( LL x ) {
        if( x >= 10 ) write( x / 10 );
        putchar( x % 10 + '0' );
    }
    int T;
    LL n;
    int p[N],vis[N],tot;
    void init() {
        vis[1] = 1;
        for(int i = 2; i <= 1e6; ++i) {
            if(!vis[i]) p[++tot] = i;
            for(int j = 1; j <= tot && p[j] * i <= 1e6; ++j) {
                vis[i * p[j]] = 1;
                if(i % p[j] == 0) break;
            }
        }
    }
    LL solve(LL n) {
        LL ans = 1, num = 1, tn = n;
        for(int i = 1; i <= tot && p[i] * p[i] <= n; ++i) if(n % p[i] == 0){
            LL t = p[i], tmp1 = 1, tmp2 = 0;
            while(n % t==0) {
                n /= t;
                tmp1 = tmp1 * t * t + 1;
                ++tmp2;
            }
            ans *= tmp1;
            num *= (tmp2 + 1);
        }
        if(n != 1) {
            num *= 2;
            ans *= (1 + n * n);
        }
        ans -= num * tn;
        return ans;
    }
    int main() {
        T = read();
        init();
        while(T--) {
            n = read();
            write(solve(n)); putchar('
    ');
        }
        return 0;
    }
    
  • 相关阅读:
    从YouTube改版看“移动优先”——8个移动优先网站设计案例赏析
    如何设计出正确的搜索模式?
    20个优秀手机界面扁平化设计,让你一秒看懂扁平化
    更巧妙的表单设计与登陆访问
    子树路径
    选拔赛-最短路
    hiho1050(树的直径)
    逆元
    hiho1303(模线性方程组)
    扩展欧几里德
  • 原文地址:https://www.cnblogs.com/excellent-zzy/p/12500187.html
Copyright © 2011-2022 走看看