zoukankan      html  css  js  c++  java
  • Tensorflow 搭建自己的神经网络(五)

    自编码Autoencoder

    神经网络的非监督学习

    神经网络接收图像→给图像打马赛克→再还原 

    原有的图像被压缩,再用所储存的特征信息,经过解压获得原图。

    如果神经元直接从获取的高清图像中取学习信息,会是一件很吃力的事情,所以通过特征提取,提取出能够重构出原图的主要信息,把缩减后的信息放入神经网络中进行学习,就可以更加轻松的学习。

     

    输入:白色的X

    输出:黑色的X

    求取两者的误差,经过误差反向传递,逐步提升自编码准确性,中间的隐层就是能够提取出原数据最主要特征的神经元。

    为什么说其是非监督学习:因为该过程只是用了X,而不用其标签,所以使非监督学习。

    一般使用的时候只是用前半部分

    因为前面已经学习了数据的精髓,我们只需要创建一个神经网络来学习这些精髓就好啦,可以达到和普通神经网络一样的效果,并且很高效。

    编码器:前半部分

    解码器:后半部分

    自编码和PCA类似,可以提取出特征,可以给特征降维,自编码超越了PCA。

    代码一:

    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
    """
    Created on Thu Apr 11 00:02:38 2019
    
    @author: xiexj
    """
    
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)
    
    # Parameters
    learning_rate = 0.01
    training_epochs = 5
    batch_size = 256
    display_step = 1
    examples_to_show = 10
    
    # Network Parameters
    n_input = 784  # MNIST data input (img shape: 28*28)
    
    # tf Graph input (only pictures)
    X = tf.placeholder("float", [None, n_input])
    
    # hidden layer settings
    n_hidden_1 = 256 # 1st layer num features
    n_hidden_2 = 128 # 2nd layer num features
    weights = {
        'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
        'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
        'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
    }
    biases = {
        'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'decoder_b2': tf.Variable(tf.random_normal([n_input])),
    }
    
    # Building the encoder
    def encoder(x):
        # Encoder Hidden layer with sigmoid activation #1
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                       biases['encoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                       biases['encoder_b2']))
        return layer_2
    
    # Building the decoder
    def decoder(x):
        # Encoder Hidden layer with sigmoid activation #1
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                       biases['decoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                       biases['decoder_b2']))
        return layer_2
    
    # Construct model
    encoder_op = encoder(X)
    decoder_op = decoder(encoder_op)
    
    # Prediction
    y_pred = decoder_op
    # Targets (Labels) are the input data.
    y_true = X
    
    # Define loss and optimizer, minimize the squared error
    cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    
    # Launch the graph
    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)
        total_batch = int(mnist.train.num_examples/batch_size)
        for epoch in range(training_epochs):
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                _, c = sess.run([optimizer, cost], feed_dict={X:batch_xs})
            if epoch % display_step == 0:
                print("Epoch:", '%04d' % (epoch+1),"cost=", "{:.9f}".format(c))
                print("Epoch:", '%04d' % (epoch+1),"cost=", "{:.9f}".format(c))
        print("Optimization Finished!")
                
        encode_decode = sess.run(y_pred, feed_dict={X:mnist.test.images[:examples_to_show]})   
        f, a = plt.subplots(2, 10, figsize=(10, 2))
        for i in range(examples_to_show):
            a[0][i].imshow(np.reshape(mnist.test.images[i],(28,28)))
            a[1][i].imshow(np.reshape(encode_decode[i],(28,28)))
        plt.show()

    training_epochs = 5 # 训练批数

    training_epochs = 10 # 训练批数

     代码二:

    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
    """
    Created on Wed Apr 10 21:43:11 2019
    
    @author: xiexj
    """
    
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)
    
    learning_rate = 0.01
    trainning_epochs = 10 #20
    batch_size = 256
    display_step = 1
    n_input = 784
    X = tf.placeholder(tf.float32, [None, n_input])
    
    n_hidden_1 = 128
    n_hidden_2 = 64
    n_hidden_3 = 10
    n_hidden_4 = 2
    
    weights = {
            'encoder_h1':tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
            'encoder_h2':tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
            'encoder_h3':tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
            'encoder_h4':tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)),
            'decoder_h1':tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
            'decoder_h2':tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
            'decoder_h3':tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
            'decoder_h4':tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
            }
    biases = {
            'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
            'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
            'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
            'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
            'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
            'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
            'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
            'decoder_b4': tf.Variable(tf.random_normal([n_input])),
            }
    
    def encoder(x):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x,weights['encoder_h1']),
                                    biases['encoder_b1']))
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                    biases['encoder_b2']))
        layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
                                       biases['encoder_b3']))
        # layer_4 dont use af
        layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
                                        biases['encoder_b4'])
        return layer_4
    
    def decoder(x):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x,weights['decoder_h1']),
                                       biases['decoder_b1']))
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1,weights['decoder_h2']),
                                       biases['decoder_b2']))
        layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
                                    biases['decoder_b3']))
        layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
                                    biases['decoder_b4']))
        return layer_4
    
    encoder_op = encoder(X)
    decoder_op = decoder(encoder_op)
    y_pred = decoder_op
    y_true = X
    
    cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        total_batch = int(mnist.train.num_examples/batch_size)
        for epoch in range(trainning_epochs):
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                _, c = sess.run([optimizer, cost], feed_dict={X:batch_xs})
            if epoch % display_step == 0:
                print("Epoch:%04d" % (epoch+1),"cost={:.9f}".format(c))
        print("Optimization Finished!")
        
        encoder_result = sess.run(encoder_op, feed_dict={X:mnist.test.images})
        plt.scatter(encoder_result[:,0],encoder_result[:,1],c=mnist.test.labels)
        plt.show()

  • 相关阅读:
    Jqurey 得到url参数 getUrlParam
    JQUERY获取当前页面的URL信息
    TextView,imageView属性讲解
    滑动解锁
    显示界面跳转,隐式跳转
    代码进行Relativelayout,constraintLayout布局
    代码布局-LinearLayout
    实例xml拖拽详细方法布局
    layout布局
    AS资源了解
  • 原文地址:https://www.cnblogs.com/exciting/p/10691227.html
Copyright © 2011-2022 走看看