zoukankan      html  css  js  c++  java
  • java并发:jdk1.8中ConcurrentHashMap源码浅析

    ConcurrentHashMap是线程安全的。可以在多线程中对ConcurrentHashMap进行操作。

    在jdk1.7中,使用的是锁分段技术Segment。数据结构是数组+链表。

    对比jdk1.7,在jdk1.8中,ConcurrentHashMap主要使用了CAS(compareAndSwap)、volatile、synchronized锁。

    跟jdk1.8中的HashMap一样,数据结构是数组+链表+红黑树。当链表长度过长时,会转变为红黑树。

    jdk1.8的HashMap源码浅析,见 https://www.cnblogs.com/expiator/p/10062968.html

    对比HashMap与ConcurrentHashMap

    ConcurrentHashMap是线程安全的,而HashMap线程不安全。

    ConcurrentHashMap的key和value都不允许为null。而HashMap则允许。

    构造方法:

    ConcurrentHashMap构造方法如下:

       /**
         * Creates a new, empty map with the default initial table size (16).
         */
        public ConcurrentHashMap() {
        }
    
         /**
         * Creates a new, empty map with an initial table size
         * accommodating the specified number of elements without the need
         * to dynamically resize.
         *
         * @param initialCapacity The implementation performs internal
         * sizing to accommodate this many elements.
         * @throws IllegalArgumentException if the initial capacity of
         * elements is negative
         */
        public ConcurrentHashMap(int initialCapacity) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException();
            int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                       MAXIMUM_CAPACITY :
                       tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
            this.sizeCtl = cap;
        }    

    重要的成员变量:

       /**
         * The default initial table capacity.  Must be a power of 2
         * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
    *
    * 初始容量跟HashMap一样,都是16.
    */ private static final int DEFAULT_CAPACITY = 16; /** * The bin count threshold for using a tree rather than list for a * bin. Bins are converted to trees when adding an element to a * bin with at least this many nodes. The value must be greater * than 2, and should be at least 8 to mesh with assumptions in * tree removal about conversion back to plain bins upon * shrinkage.
    * 当链表长度大于8时,转变为红黑树。
    */ static final int TREEIFY_THRESHOLD = 8;

    Node<K,V>节点

    内部类Node,本质是存放键值对的节点。可以是链表、红黑树

      /**
         * Key-value entry.  This class is never exported out as a
         * user-mutable Map.Entry (i.e., one supporting setValue; see
         * MapEntry below), but can be used for read-only traversals used
         * in bulk tasks.  Subclasses of Node with a negative hash field
         * are special, and contain null keys and values (but are never
         * exported).  Otherwise, keys and vals are never null.
         */
        static class Node<K,V> implements Map.Entry<K,V> {
            //final修饰变量。  
            //如果修饰的是基本数据类型的变量,则其数值一旦在初始化之后便不能更改;
            //如果修饰的是引用类型的变量,则在对其初始化之后便不能再让其指向另一个对象。
            final int hash;
            final K key;
            //volatile修饰变量,保证可见性。还可以禁止指令重排序,保证有序性。
            //可见性就是指当一个线程修改了线程共享变量的值,其它线程能够立即得知这个修改。
            volatile V val;
            //下一个节点
            volatile Node<K,V> next;
    
            Node(int hash, K key, V val, Node<K,V> next) {
                this.hash = hash;
                this.key = key;
                this.val = val;
                this.next = next;
            }
    
            public final K getKey()       { return key; }
            public final V getValue()     { return val; }
            public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
            public final String toString(){ return key + "=" + val; }
            public final V setValue(V value) {
                throw new UnsupportedOperationException();
            }
    
            //重写equals
            public final boolean equals(Object o) {
                Object k, v, u; Map.Entry<?,?> e;
                return ((o instanceof Map.Entry) &&
                        (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                        (v = e.getValue()) != null &&
                        (k == key || k.equals(key)) &&
                        (v == (u = val) || v.equals(u)));
            }
    
            /**
             * Virtualized support for map.get(); overridden in subclasses.
             */
            Node<K,V> find(int h, Object k) {
                Node<K,V> e = this;
                if (k != null) {
                //遍历,找到对应节点就返回.
                    do {
                        K ek;
                        //必须满足hash值相等,key相等,且不为空。
                        if (e.hash == h &&
                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
                            return e;
                    } while ((e = e.next) != null);
                }
                return null;
            }
        }

     查询数据get()

    get()方法如下:

      /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code key.equals(k)},
         * then this method returns {@code v}; otherwise it returns
         * {@code null}.  (There can be at most one such mapping.)
         *
         * @throws NullPointerException if the specified key is null
         */
        public V get(Object key) {
            Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
            int h = spread(key.hashCode());
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (e = tabAt(tab, (n - 1) & h)) != null) {
    //如果hash值相等,且key相等,就返回value
    if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null;
    //遍历
    while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }

    添加数据put()

    put()方法如下:

      /**
         * Maps the specified key to the specified value in this table.
         * Neither the key nor the value can be null.
         * key和value都不可以是null。
         *
         * <p>The value can be retrieved by calling the {@code get} method
         * with a key that is equal to the original key.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with {@code key}, or
         *         {@code null} if there was no mapping for {@code key}
         * @throws NullPointerException if the specified key or value is null
         */
        public V put(K key, V value) {
            return putVal(key, value, false);
        }
    
        /** Implementation for put and putIfAbsent */
        final V putVal(K key, V value, boolean onlyIfAbsent) {
            if (key == null || value == null) throw new NullPointerException();
            //先计算key的hashCode
            int hash = spread(key.hashCode());
            int binCount = 0;
            for (Node<K,V>[] tab = table;;) {
                Node<K,V> f; int n, i, fh;
    //数组为空,则先初始化数组
    if (tab == null || (n = tab.length) == 0) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
    //如果所在位置没有值,就直接插入节点
    if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null;
    //节点加锁
    synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } }
    //处理树节点
    else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) {
    //如果链表长度已经达到临界值8,就需要把链表转换为红黑树结构
    if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } addCount(1L, binCount); return null; }

    数组 Node<K,V>[ ]的初始化

    当数组为空时,初始化数组如下:

       /**
         * Initializes table, using the size recorded in sizeCtl.
         */
        private final Node<K,V>[] initTable() {
            Node<K,V>[] tab; int sc;
            while ((tab = table) == null || tab.length == 0) {
                if ((sc = sizeCtl) < 0)
                    Thread.yield(); // lost initialization race; just spin
    //采用了CAS
    else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) { try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n]; table = tab = nt; sc = n - (n >>> 2); } } finally { sizeCtl = sc; } break; } } return tab; }

    Segment类是基于可重入锁ReentrantLock的内部类。可以设定负载因子loadFactor。

    jdk1.8以前采用的锁分段技术就是使用Segement实现的。Segement可以锁住各个HashEntry。保证多线程环境下各个部分不产生冲突。

        /**
         * Stripped-down version of helper class used in previous version,
         * declared for the sake of serialization compatibility
         */
        static class Segment<K,V> extends ReentrantLock implements Serializable {
            private static final long serialVersionUID = 2249069246763182397L;
            final float loadFactor;
            Segment(float lf) { this.loadFactor = lf; }
        }

    扩容

       /**
         * Moves and/or copies the nodes in each bin to new table. See
         * above for explanation.
         */
        private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
            int n = tab.length, stride;
            if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
                stride = MIN_TRANSFER_STRIDE; // subdivide range
            if (nextTab == null) {            // initiating
                try {
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                    nextTab = nt;
                } catch (Throwable ex) {      // try to cope with OOME
                    sizeCtl = Integer.MAX_VALUE;
                    return;
                }
                nextTable = nextTab;
                transferIndex = n;
            }
            int nextn = nextTab.length;
            ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
            boolean advance = true;
            boolean finishing = false; // to ensure sweep before committing nextTab
            for (int i = 0, bound = 0;;) {
                Node<K,V> f; int fh;
                while (advance) {
                    int nextIndex, nextBound;
                    if (--i >= bound || finishing)
                        advance = false;
                    else if ((nextIndex = transferIndex) <= 0) {
                        i = -1;
                        advance = false;
                    }
                    else if (U.compareAndSwapInt
                             (this, TRANSFERINDEX, nextIndex,
                              nextBound = (nextIndex > stride ?
                                           nextIndex - stride : 0))) {
                        bound = nextBound;
                        i = nextIndex - 1;
                        advance = false;
                    }
                }
                if (i < 0 || i >= n || i + n >= nextn) {
                    int sc;
                    if (finishing) {
                        nextTable = null;
                        table = nextTab;
                        sizeCtl = (n << 1) - (n >>> 1);
                        return;
                    }
                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                        if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                            return;
                        finishing = advance = true;
                        i = n; // recheck before commit
                    }
                }
                else if ((f = tabAt(tab, i)) == null)
                    advance = casTabAt(tab, i, null, fwd);
                else if ((fh = f.hash) == MOVED)
                    advance = true; // already processed
                else {
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            Node<K,V> ln, hn;
                            if (fh >= 0) {
                                int runBit = fh & n;
                                Node<K,V> lastRun = f;
                                for (Node<K,V> p = f.next; p != null; p = p.next) {
                                    int b = p.hash & n;
                                    if (b != runBit) {
                                        runBit = b;
                                        lastRun = p;
                                    }
                                }
                                if (runBit == 0) {
                                    ln = lastRun;
                                    hn = null;
                                }
                                else {
                                    hn = lastRun;
                                    ln = null;
                                }
                                for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                    int ph = p.hash; K pk = p.key; V pv = p.val;
                                    if ((ph & n) == 0)
                                        ln = new Node<K,V>(ph, pk, pv, ln);
                                    else
                                        hn = new Node<K,V>(ph, pk, pv, hn);
                                }
                                setTabAt(nextTab, i, ln);
                                setTabAt(nextTab, i + n, hn);
                                setTabAt(tab, i, fwd);
                                advance = true;
                            }
                            else if (f instanceof TreeBin) {
                                TreeBin<K,V> t = (TreeBin<K,V>)f;
                                TreeNode<K,V> lo = null, loTail = null;
                                TreeNode<K,V> hi = null, hiTail = null;
                                int lc = 0, hc = 0;
                                for (Node<K,V> e = t.first; e != null; e = e.next) {
                                    int h = e.hash;
                                    TreeNode<K,V> p = new TreeNode<K,V>
                                        (h, e.key, e.val, null, null);
                                    if ((h & n) == 0) {
                                        if ((p.prev = loTail) == null)
                                            lo = p;
                                        else
                                            loTail.next = p;
                                        loTail = p;
                                        ++lc;
                                    }
                                    else {
                                        if ((p.prev = hiTail) == null)
                                            hi = p;
                                        else
                                            hiTail.next = p;
                                        hiTail = p;
                                        ++hc;
                                    }
                                }
                                ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                    (hc != 0) ? new TreeBin<K,V>(lo) : t;
                                hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                    (lc != 0) ? new TreeBin<K,V>(hi) : t;
                                setTabAt(nextTab, i, ln);
                                setTabAt(nextTab, i + n, hn);
                                setTabAt(tab, i, fwd);
                                advance = true;
                            }
                        }
                    }
                }
            }
        }

    更详细的内容见 :  https://blog.csdn.net/u010723709/article/details/48007881

  • 相关阅读:
    Tensorflow基础教程4:卷积神经网络(CNN)介绍
    Keras之 cifar10数据集使用keras generator读取、模型训练、预测
    Tensorflow基础教程3:基础示例:多层感知机(MLP)
    Tensorflow基础教程2:Tensorflow模型建立与训练
    Chaquopy中不能导入64位Python训练的机器学习模型
    (转)使用SDWebImage和YYImage下载高分辨率图,导致内存暴增的解决办法
    C/C++ 递归与结束递归
    C/C++ 读取文件16进制格式
    C/C++ 打开外部程序
    C/C++ 遍历托盘图标
  • 原文地址:https://www.cnblogs.com/expiator/p/10109491.html
Copyright © 2011-2022 走看看