zoukankan      html  css  js  c++  java
  • [Kaggle] Sentiment Analysis on Movie Reviews

    【项目介绍】

    "There's a thin line between likably old-fashioned and fuddy-duddy, and The Count of Monte Cristo ... never quite settles on either side."

    The Rotten Tomatoes movie review dataset is a corpus of movie reviews used for sentiment analysis, originally collected by Pang and Lee [1]. In their work on sentiment treebanks, Socher et al. [2] used Amazon's Mechanical Turk to create fine-grained labels for all parsed phrases in the corpus. This competition presents a chance to benchmark your sentiment-analysis ideas on the Rotten Tomatoes dataset. You are asked to label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity(句子否定、讽刺、简洁、语言歧义), and many others make this task very challenging.

    Treebank

    Kaggle is hosting this competition for the machine learning community to use for fun and practice. This competition was inspired by the work of Socher et al [2]. We encourage participants to explore the accompanying (and dare we say, fantastic) website that accompanies the paper:

    http://nlp.stanford.edu/sentiment/

    There you will find have source code, a live demo, and even an online interface to help train the model.

    [1] Pang and L. Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115–124.

    [2] Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Chris Manning, Andrew Ng and Chris Potts. Conference on Empirical Methods in Natural Language Processing (EMNLP 2013).

    Image credits: Popcorn - Maura Teague, http://www.flickr.com/photos/93496438@N06/


     深度学习方法

    1. 模型

    2. 调试中出现的问题:

    (1)在第二次建立模型,以及建好模型第一次训练时,都会出现以下错误:

    InvalidArgumentError: No OpKernel was registered to support Op 'CudnnRNN' with these attrs.  Registered devices: [CPU], Registered kernels:
      <no registered kernels>
    
         [[Node: bidirectional_1/CudnnRNN = CudnnRNN[T=DT_FLOAT, direction="unidirectional", dropout=0, input_mode="linear_input", is_training=true, rnn_mode="gru", seed=87654321, seed2=0](bidirectional_1/transpose, bidirectional_1/ExpandDims_1, bidirectional_1/Const, bidirectional_1/concat)]]

    解决方法:主要是配置原因,后来安装合适的CUDA包就好了..

     3. 预测结果:

  • 相关阅读:
    Java实现 LeetCode 371 两整数之和
    Java实现 LeetCode 371 两整数之和
    Java实现 LeetCode 371 两整数之和
    Java实现 LeetCode 1013 将数组分成和相等的三个部分
    Java实现 LeetCode 1013 将数组分成和相等的三个部分
    Java实现 LeetCode 1013 将数组分成和相等的三个部分
    Java实现蓝桥杯VIP算法训练 纪念品分组
    Java实现蓝桥杯VIP算法训练 纪念品分组
    linux下syscall函数,SYS_gettid,SYS_tgkill
    可变参数宏__VA_ARGS__和...
  • 原文地址:https://www.cnblogs.com/expttt/p/9338234.html
Copyright © 2011-2022 走看看