题面
Description
我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树。
考虑一个含有(n)个互异正整数的序列(c_1,c_2,ldots,c_n)。如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合({c_1,c_2,ldots,c_n})中,我们的小朋友就会将其称作神犇的。并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和。
给出一个整数(m),你能对于任意的(s(1≤s≤m))计算出权值为(s)的神犇二叉树的个数吗?请参照样例以更好的理解什么样的两棵二叉树会被视为不同的。
我们只需要知道答案关于(998244353)((7×17×223+1),一个质数)取模后的值。
Input
第一行有(2)个整数(n,m(1≤n≤10^5,1≤m≤10^5))。
第二行有(n)个用空格隔开的互异的整数(c_1,c_2,ldots,c_n(1≤c_i≤10^5))。
Output
输出(m)行,每行有一个整数。第(i)行应当含有权值恰为(i)的神犇二叉树的总数。请输出答案关于(998244353)((=7×17×223+1),一个质数)取模后的结果。
Sample Input #1
2 3
1 2
Sample Output #1
1
3
9
Sample Input #2
3 10
9 4 3
Sample Output #2
0
0
1
1
0
2
4
2
6
15
Sample Input #3
5 10
13 10 6 4 15
Sample Output #3
0
0
0
1
0
1
0
2
0
5
HINT
对于第一个样例,有9个权值恰好为3的神犇二叉树:
分析
设$$v_i=sum_{k=0}^n[c_k=i]$$
也即(k)在(c)中的出现次数(在此处只能为(1)或(0))。
设(V(x))为(v)的生成函数:$$V(x)=sum_{k=0}^infty v_k x^k$$
设权值为(i)的神犇二叉树的个数为(f_i),则我们枚举根的权值和左子树的大小,可以得到一个递归式:$$f_i=sum_{k=0}^i v_ksum_{j=0}^{i-k}f_j f_{i-k-j}=sum_{x+y+z=i}v_x f_y f_z$$
当(i=0)时,$$f_0=1$$
那么我们发现这是一个三重卷积。我们知道数列的卷积相当于生成函数的乘法,那么我们设(f)的生成函数(F(x))为:$$F(x)=sum_{k=0}^infty f_k x^k$$
则我们可以得到一个关于(F(x))的一元二次方程(记得要加上(f_0=1)时的情况):$$F(x)=V(x)F(x)^2+1$$
也即:$$V(x)F(x)^2-F(x)+1=0$$
那么我们使用二次方程求根公式得到:$$F(x)=frac{1pmsqrt{1-4V(x)}}{2 V(x)}$$
那么到底哪个才是真的(F(x))呢?
- 若(F(x)=displaystylefrac{1+sqrt{1-4V(x)}}{2V(x)}):
若(x)趋向于零,则(F(x))就会趋向于(f_0)的值。那么我们求(F(x))在(x o0)下的极限:$$lim_{x o0}frac{1+sqrt{1-4V(x)}}{2V(x)}$$
因为(v_0=0),所以当(x o0)时(V(x) o0)。则有上式相当于:$$lim_{x o0}frac{1+sqrt{1-4x}}{2x}$$
显然,由于当(x o0)时有(2x o0)且(1+sqrt{1-4x} o2),则有:$$lim_{x o0}frac{1+sqrt{1-4x}}{2x}=infty$$
舍去。
- 若(F(x)=displaystylefrac{1-sqrt{1-4V(x)}}{2V(x)}):
同理,有:$$lim_{x o0}frac{1-sqrt{1-4V(x)}}{2V(x)}=lim_{x o0}frac{1-sqrt{1-4x}}{2x}$$
我们发现当(x o0)时(1-sqrt{1-4x} o0)且(2x o0),则我们应用洛必达法则。分子求导可得:$$frac{d(1-sqrt{1-4x})}{d x}=frac{d(1-sqrt{1-4x})}{d(1-4x)}frac{d(1-4x)}{d x}=-frac{1}{2sqrt{1-4x}} imes(-4)=frac{2}{sqrt{1-4x}}$$
分母求导可得:$$frac{d(2x)}{d x}=2$$
则有:$$lim_{x o0}frac{1-sqrt{1-4x}}{2x}=frac{limlimits_{x o0}frac{2}{sqrt{1-4x}}}{limlimits_{x o0}2}=frac{2}{2}=1$$
符合(f_0=1)。
综上,有$$F(x)=frac{1-sqrt{1-4V(x)}}{2V(x)}$$
为了方便计算,我们构造一个平方差,上下同乘(1+sqrt{1-4V(x)}):$$F(x)=frac{left[1-sqrt{1-4V(x)} ight]left[1+sqrt{1-4V(x)} ight]}{2V(x)left[1+sqrt{1-4V(x)} ight]}=frac{2}{1+sqrt{1-4V(x)}}$$
那么我们多项式求逆+多项式求倒解决这道题。
详见https://blog.csdn.net/ez_tjy/article/details/80213166
代码
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;
const ll p=998244353,g=3;
int nn,n,m,r[262145];
ll inv[262146],c[262145],gn[2][262145],ans;
inline ll pow(ll a,int b){
ll ans=1;
while(b){
if(b&1)ans=ans*a%p;
a=a*a%p;
b>>=1;
}
return ans;
}
inline ll add(ll a,ll b){return a+b>p?a+b-p:a+b;}
inline ll cut(ll a,ll b){return a-b<0?a-b+p:a-b;}
void init(){
for(n=1;n<=m;n<<=1);
nn=n;
gn[0][0]=gn[1][0]=1;
gn[0][1]=pow(g,(p-1)/(n<<1));
gn[1][1]=pow(gn[0][1],p-2);
for(int i=2;i<(n<<1);i++){gn[0][i]=gn[0][i-1]*gn[0][1]%p;gn[1][i]=gn[1][i-1]*gn[1][1]%p;}
inv[1]=1;
for(int i=2;i<=(n<<1);i++)inv[i]=inv[p%i]*(p-p/i)%p;
}
void NTT(ll c[],int n,int tp=1){
for(int i=0;i<n;i++){
r[i]=(r[i>>1]>>1)|((i&1)*(n>>1));
if(i<r[i])swap(c[i],c[r[i]]);
}
for(int i=1;i<n;i<<=1){
for(int j=0;j<n;j+=(i<<1)){
for(int k=0;k<i;k++){
ll x=c[j+k],y=gn[tp!=1][nn/i*k]*c[j+k+i]%p;
c[j+k]=add(x,y);
c[j+k+i]=cut(x,y);
}
}
}
}
void INTT(ll c[],int n){
NTT(c,n,-1);
for(int i=0;i<n;i++)c[i]=c[i]*inv[n]%p;
}
void inverse(ll c[],int n=n){
static ll t[262145],tma[262145];
t[0]=pow(c[0],p-2);
for(int k=2;k<=n;k<<=1){
for(int i=0;i<(k<<1);i++)tma[i]=(i<k?c[i]:0);
for(int i=(k>>1);i<(k<<1);i++)t[i]=0;
NTT(tma,k<<1);
NTT(t,k<<1);
for(int i=0;i<(k<<1);i++)t[i]=cut(add(t[i],t[i]),t[i]*t[i]%p*tma[i]%p);
INTT(t,k<<1);
}
memcpy(c,t,sizeof(ll)*n);
}
void sqrt(ll c[],int n=n){
static ll t[262145],tma[262145],tmb[262145];
t[0]=1;
for(int k=2;k<=n;k<<=1){
for(int i=0;i<k;i++)tma[i]=add(t[i],t[i]);
inverse(tma,k);
for(int i=0;i<(k<<1);i++)tmb[i]=(i<k?c[i]:0);
NTT(tma,k<<1);
NTT(tmb,k<<1);
for(int i=0;i<(k<<1);i++){
ll tmp=tma[i];
tma[i]=t[i];
t[i]=tmp*tmb[i]%p;
}
INTT(t,k<<1);
for(int i=0;i<(k<<1);i++)t[i]=(i<k?add(t[i],tma[i]*inv[2]%p):0);
}
memcpy(c,t,sizeof(ll)*n);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
c[x]=p-4;
}
c[0]=1;
init();
sqrt(c);
c[0]=2;
inverse(c);
for(int i=1;i<=m;i++)printf("%lld
",add(c[i],c[i]));
}