zoukankan      html  css  js  c++  java
  • 算法课堂笔记6—在线算法

    今天的算法课是学习在线算法,在计算机科学中,一个在线算法是指它可以以序列化的方式一个个的处理输入,也就是说在开始时并不需要已经知道所有的输入。相对的,对于一个离线算法,在开始时就需要知道问题的所有输入数据,而且在解决一个问题后就要立即输出结果。例如,选择排序在排序前就需要知道所有待排序元素,然而插入排序就不必。

    举的例子有:1.沿城墙走找门。2.发扑克牌,最大点数。3.选择item.

    听到的重点是:1. Competitiveness的概念。2. 老师反复提到的adversary

    Competitiveness,简单来说就是我们设计的算法的收益,代价什么的和最优算法的比值,用这个来衡量我们算法的好坏。对于最优算法OPT,我们并不知道它具体是什么,只知道有这么个算法能得到最优结果。对于如何考虑离线算法,因为不知道全局的情况。 可以考虑有一个敌人(adversary),总是让我们的算法陷入最坏的情况,让我们达不到好的Competitiveness,下面以例子说明。

    例子1:一座城墙,有一个城门,初始你在城墙的某个地方,你想到城门那,在你左边或者右边,你不知道城墙的具体位置,方向。这个时候如何走才能使你找到城墙的时候走的距离最小呢?

    因为不知道全局情况是什么,所以这里想要设计出比较好的算法比较困难,所以,对于离线算法,首先考虑的是最优算法OPT是什么,再来看看它会怎么“整“你。对于最优算法来说,因为它是知道全局情况的,所以对于他来说直接走到门那里就ok了,假设初始位置离城门的位置是y,那么最优算法OPT走的距离就是y。最优算法我们知道了,现在想的是有个adversary会怎么使我们的算法更坏,使我们的算法走多少个y呢?

    假设我现在定的算法是朝着某一方向,加入是左边走x距离,如果没找到门则折回并往反方向右走2x距离,再没找到就再折回,往反方向走上一个距离的2倍。如果是这样的算法的话,那么这个adversary会怎么整我们呢?它可能会将城门的位置设置在x+ε(ε很小)或者设置在与我们走的初始位置反方向的2x+ε处(这里开始我有疑问,为什么不把城门的位置设大点好让我们的算法对此来回走,后来用笔计算了下,这样我们的最优算法OPT也会变大,ALG/OPT的结果反而变小,这不是adversary所希望的)。那么Competitiveness的情况如下:

    即Competitiveness的最优值会接近8,就是说最多会走最优解的8倍距离。老师也说了,可以将往回走的值设为3倍及以上也可,计算出来的结果表明取2倍的距离会得到最好的Competitiveness。

    例子2:发扑克牌问题,大致意思(我没听错的话)就是adversary从一副扑克牌中依次选10张牌,每次选出一张给你要还是不要,你只能要一张。对于最优算法OPT来说,因为它知道全局情况他可以任意依次选10张牌,但是他的目的是使你的Competitiveness尽可能不利,即这里的adversary的目标是使你选较小的牌,而最优算法会选较大的牌从而使Competitiveness变大(OPT/ALG),那么它的策略是在前九张不会放较大的数字,比如说一直放4,你可能犹豫不觉,到了倒数第二张,如果你选了4,那么adversary就放13(k)。如果你不选4,那么最后一张就放1,这两种情况下的Competitiveness分别为13/4和4/1.

    这样总结的到的结论是:对于在线算法,因为没办法知道全局情况(事先的全部输入),所以不可能好过最优算法,我们要考虑的是最坏的情况下怎么取得较好的Competitiveness

    例3:工作调度问题(据说是谷歌的面试题),题目的意思我好想理解的有问题。。。。。。,这里暂且不分析了,以后自己搞明白了再回来写

  • 相关阅读:
    codeforces 616B Dinner with Emma
    codeforces 616A Comparing Two Long Integers
    codeforces 615C Running Track
    codeforces 612C Replace To Make Regular Bracket Sequence
    codeforces 612B HDD is Outdated Technology
    重写父类中的成员属性
    子类继承父类
    访问修饰符
    方法的参数
    实例化类
  • 原文地址:https://www.cnblogs.com/f91og/p/6095761.html
Copyright © 2011-2022 走看看