zoukankan      html  css  js  c++  java
  • LeetCode解题报告—— Sum Root to Leaf Numbers & Surrounded Regions & Single Number II

    1. Sum Root to Leaf Numbers

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

    An example is the root-to-leaf path 1->2->3 which represents the number 123.

    Find the total sum of all root-to-leaf numbers.

    Note: A leaf is a node with no children.

    Example:

    Input: [1,2,3]
        1
       / 
      2   3
    Output: 25
    Explanation:
    The root-to-leaf path 1->2 represents the number 12.
    The root-to-leaf path 1->3 represents the number 13.
    Therefore, sum = 12 + 13 = 25.

    Example 2:

    Input: [4,9,0,5,1]
        4
       / 
      9   0
     / 
    5   1
    Output: 1026
    Explanation:
    The root-to-leaf path 4->9->5 represents the number 495.
    The root-to-leaf path 4->9->1 represents the number 491.
    The root-to-leaf path 4->0 represents the number 40.
    Therefore, sum = 495 + 491 + 40 = 1026.

    思路:本来想用递归解决这个问题,结果在传参时出现了一个很典型的错误,结果还是点来了discussion,瞬间清朗很多,果然大佬就是大佬。

    public int sumNumbers(TreeNode root) {
        return sum(root, 0);
    }
    
    public int sum(TreeNode n, int s){
        if (n == null) return 0;
        if (n.right == null && n.left == null) return s*10 + n.val;  // 叶节点的情形
        return sum(n.left, s*10 + n.val) + sum(n.right, s*10 + n.val);  // 不是叶节点的情形
    }

    感觉对于树有关的题目,很多都可以用递归来解决,因为在处理完了根节点后,对于它的左子节点和右子节点的处理流程和根节点差不多,关键是着其中参数的变化。 

    2. Surrounded Regions

    Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'.

    A region is captured by flipping all 'O's into 'X's in that surrounded region.

    Example:

    X X X X
    X O O X
    X X O X
    X O X X
    

    After running your function, the board should be:

    X X X X
    X X X X
    X X X X
    X O X X

    思路:类似于围棋一样,基本思路是先将整个矩阵中没有围住的 O (也就是临接边界的) 置为 * ,再将被围住的(其余的) O 置为 X ,再将 * 置回 O 即可,需要注意的是在第一步寻找没有被围住的 O 时,需要用到DFS或者BFS来搜索。

    public void solve(char[][] board) {
        if (board.length == 0 || board[0].length == 0)
            return;
        if (board.length < 2 || board[0].length < 2)
            return;
        int m = board.length, n = board[0].length;
        //Any 'O' connected to a boundary can't be turned to 'X', so ...
        //Start from first and last column, turn 'O' to '*'.
        for (int i = 0; i < m; i++) {
            if (board[i][0] == 'O')
                boundaryDFS(board, i, 0);
            if (board[i][n-1] == 'O')
                boundaryDFS(board, i, n-1);    
        }
        //Start from first and last row, turn '0' to '*'
        for (int j = 0; j < n; j++) {
            if (board[0][j] == 'O')
                boundaryDFS(board, 0, j);
            if (board[m-1][j] == 'O')
                boundaryDFS(board, m-1, j);    
        }
        //post-prcessing, turn 'O' to 'X', '*' back to 'O', keep 'X' intact.
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (board[i][j] == 'O')
                    board[i][j] = 'X';
                else if (board[i][j] == '*')
                    board[i][j] = 'O';
            }
        }
    }
    //Use DFS algo to turn internal however boundary-connected 'O' to '*';
    private void boundaryDFS(char[][] board, int i, int j) {
        if (i < 0 || i > board.length - 1 || j <0 || j > board[0].length - 1)
            return;
        if (board[i][j] == 'O')  // 感觉这个判断条件可以省略
            board[i][j] = '*';
        if (i > 1 && board[i-1][j] == 'O')  // 向四个相邻的方向DFS,DFS是递归,BFS是队列。上
            boundaryDFS(board, i-1, j);
        if (i < board.length - 2 && board[i+1][j] == 'O')  // 下
            boundaryDFS(board, i+1, j);
        if (j > 1 && board[i][j-1] == 'O')  // 左
            boundaryDFS(board, i, j-1);
        if (j < board[i].length - 2 && board[i][j+1] == 'O' )  // 右
            boundaryDFS(board, i, j+1);
    }

    注意的是上面往四个方向DFS时的if判断条件,这里用 length-2 而不是 length-1 是为了避免过深的DFS而导致的stackOverflow。

    3. Single Number II

    Given a non-empty array of integers, every element appears three times except for one, which appears exactly once. Find that single one.

    Note:

    Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?

    Example 1:

    Input: [2,2,3,2]
    Output: 3
    

    Example 2:

    Input: [0,1,0,1,0,1,99]
    Output: 99

    思路:本来为是比较简单的一题,结果还是各种恪手,算法这玩意儿,真的是好难学(┬_┬)。看了一下discuss,主要是利用位运算符,既然题目要求在线性时间内完成,即扫描一遍整个数组就能得出结果。

    public int singleNumber(int[] nums) {
        int ans = 0;
        for(int i = 0; i < 32; i++) {  // 从低位到高位处理
            int sum = 0;
            for(int j = 0; j < nums.length; j++) {
                if(((nums[j] >> i) & 1) == 1) {
                    sum++;
                    sum %= 3;  // 这里可以扩展
                }
            }
            if(sum != 0) {
                ans |= sum << i;  // 确定每个位置最终是0还是1后,还原值
            }
        }
        return ans;
    }

    选择了discuss中最容易理解的一个,主要思想就是将整数转化成32位的二进制来考虑,因为数组中的元素要么出现了3次要么出现了一次,所以任何一位上的数字(0或者1)出现的总次数是3的倍数或者3的倍数加1,所以统计总共每个位置上出现的1的个数即可,如果到了次数3就置为0,这样统计下来,那些出现次数为3的数每个二进制位置上都是0,只要出现一次的数字的二进制位留在了最后处理结果上。

  • 相关阅读:
    javascript常用继承方式.
    JavaScript异步编程的四种方法
    ajax的五种状态
    js内存泄漏的问题?
    jquery和zepto有何区别?
    nginx+play framework +mongoDB+redis +mysql+LBS实战总结
    百万级PHP网站Poppen.de的架构分享心得
    【Mongodb教程 第一课 补加课1 】windows7 下安装mongodb 开启关闭服务
    【Mongodb教程 第一课补加课2 】MongoDB下,启动服务时,出现“服务没有响应控制功能”解决方法
    【Mongodb教程 第十七课 】MongoDB常用命令 数据库命令 集合操作命令
  • 原文地址:https://www.cnblogs.com/f91og/p/8939638.html
Copyright © 2011-2022 走看看