zoukankan      html  css  js  c++  java
  • Keras + LSTM 做回归demo 2

    接上回, 这次做了一个多元回归

    这里贴一下代码

    import numpy as np
    np.random.seed(1337)
    from sklearn.model_selection import train_test_split
    import matplotlib.pyplot as plt
    import keras
    from keras.models import Sequential
    from keras.layers import Activation
    from keras.layers import LSTM
    from keras.layers import Dropout
    from keras.layers import Dense
    import pandas as pd
    

      

    datan = 1000
    # 真实参数
    ori_weights = [5, -4, 3, -2, 1]
    colsn = len(ori_weights)
    bias = -1
    ori = np.zeros((1, colsn))
    ori[0] = np.asarray(ori_weights)
    
    # 列信息
    cols_name = [chr(65+i) for i in range(colsn)]
    X = np.zeros((colsn, datan))
    
    for i in range(colsn):
        X[i] = np.random.normal(1, 0.1, datan)
    # 真实Y
    Y = np.matmul(ori, X) + bias + np.random.normal(-0.1, 0.1, (datan, ))
    
    # 数据预览
    df = pd.DataFrame(X.T, columns=cols_name)
    df['Y'] = df.apply(lambda row: np.matmul(ori, [row[k] for k in df.columns] )[0]+bias, axis=1)
    df['target'] = Y[0]
    df.head()
    

      

    X_train, X_test, Y_train, Y_test = train_test_split(X.T, Y.T, test_size=0.33, random_state=42)
    

      

    neurons = 128          
    activation_function = 'tanh'  
    loss = 'mse'                  
    optimizer="adam"              
    dropout = 0.01 
    batch_size = 12          
    epochs = 200
    

      

    model = Sequential()
    
    model.add(LSTM(neurons, return_sequences=True, input_shape=(1, colsn), activation=activation_function))
    model.add(Dropout(dropout))
    model.add(LSTM(neurons, return_sequences=True, activation=activation_function))
    model.add(Dropout(dropout))
    model.add(LSTM(neurons, activation=activation_function))
    model.add(Dropout(dropout))
    model.add(Dense(output_dim=1, input_dim=1))
    

      

    model.compile(loss=loss, optimizer=optimizer)
    

      

    epochs = 2001
    for step in range(epochs):
        cost = model.train_on_batch(X_train[:, np.newaxis], Y_train)
        if step % 30 == 0:
            print(f'{step} train cost: ', cost)
    

      

    # test
    print('Testing ------------')
    cost = model.evaluate(X_test[:, np.newaxis], Y_test, batch_size=40)
    print('test cost:', cost)
    

      

    # plotting the prediction
    Y_pred = model.predict(X_test[:, np.newaxis])
    #
    sdf = pd.DataFrame({'test':list(Y_test.T[0]), 'pred':list(Y_pred.T[0])})
    sdf.sort_values(by='test', inplace=True)
    #
    plt.scatter(range(len(Y_test)), list(sdf.test))
    plt.plot(range(len(Y_test)), list(sdf.pred), 'r--')
    plt.show()
    

      

      

      

  • 相关阅读:
    数据库:数据操作-数据的增删改
    数据库:表操作-完整性约束
    数据库:表操作-枚举类型与集合类型
    数据库:表操作-字符串类型
    数据库:表操作-数据类型(日期类型)
    数据库:表操作-数据类型(数值类型)
    python并发编程:IO模型比较分析
    java学习(二)--excel导出
    格式化字段
    myeclipse的常用快捷键
  • 原文地址:https://www.cnblogs.com/fadedlemon/p/10530244.html
Copyright © 2011-2022 走看看