zoukankan      html  css  js  c++  java
  • 分布式事务的解决方案

    CAP原则又称CAP定理,指的是在一个分布式系统中, Consistency(一致性)、 Availability(可用性)、Partition tolerance(分区容错性),三者不可得兼。
    一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
    可用性(A):在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)
    分区容忍性(P):以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择。
     
     

    分布式事务的实现有许多种,其中 XA 分布式事务协议,XA 协议包含二阶段提交(2PC)和三阶段提交(3PC)两种实现。

     XA 分布式事务协议:

    1询问,2 执行

     事务管理器:负责协调多个数据库(资源管理器)的事务,事务管理器先询问是数据库是否准备好?如果 每个 数据库都回复OK,那么就正式提交事务,在各个数据库上执行数据;如果有任何一个数据库不回复OK,那么就回滚事务。

    一:2PC(二阶段提交)方案:强一致性

     

    方案简介

     二阶段提交协议(Two-phase Commit,即 2PC)是常用的分布式事务解决方案,即将事务的提交过程分为两个阶段来进行处理:准备阶段和提交阶段。事务的发起者称协调者,事务的执行者称参与者。 

    在分布式系统里,每个节点都可以知晓自己操作的成功或者失败,却无法知道其他节点操作的成功或失败。 

    二阶段提交的算法思路可以概括为:参与者将操作成败通知协调者,再由协调者根据所有参与者的反馈情报决定各参与者是否要提交操作还是中止操作。 

    核心思想就是对每一个事务都采用先尝试后提交的处理方式,处理后所有的读操作都要能获得最新的数据,因此也可以将二阶段提交看作是一个强一致性算法。

     

    处理流程  

    阶段 1:准备阶段 

    准备阶段有如下三个步骤:

    • 协调者向所有参与者发送事务内容,询问是否可以提交事务,并等待所有参与者答复。

    • 各参与者执行事务操作,将 undo 和 redo 信息记入事务日志中(但不提交事务)。

    • 如参与者执行成功,给协调者反馈 yes,即可以提交;如执行失败,给协调者反馈 no,即不可提交。 

    阶段 2:提交阶段 

    如果协调者收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(rollback)消息;否则,发送提交(commit)消息。 

    参与者根据协调者的指令执行提交或者回滚操作,释放所有事务处理过程中使用的锁资源。(注意:必须在最后阶段释放锁资源) 

    接下来分两种情况分别讨论提交阶段的过程。

    情况 1,当所有参与者均反馈 yes,提交事务,如上图:

    • 协调者向所有参与者发出正式提交事务的请求(即 commit 请求)。

    • 参与者执行 commit 请求,并释放整个事务期间占用的资源。

    • 各参与者向协调者反馈 ack(应答)完成的消息。

    • 协调者收到所有参与者反馈的 ack 消息后,即完成事务提交。

    情况 2,当任何阶段 1 一个参与者反馈 no,中断事务,如上图:

    • 协调者向所有参与者发出回滚请求(即 rollback 请求)。

    • 参与者使用阶段 1 中的 undo 信息执行回滚操作,并释放整个事务期间占用的资源。

    • 各参与者向协调者反馈 ack 完成的消息。

    • 协调者收到所有参与者反馈的 ack 消息后,即完成事务中断。 

    方案总结

     2PC 方案实现起来简单,实际项目中使用比较少,主要因为以下问题: 

    • 性能问题:所有参与者在事务提交阶段处于同步阻塞状态,占用系统资源,容易导致性能瓶颈

    • 可靠性问题:如果协调者存在单点故障问题,如果协调者出现故障,参与者将一直处于锁定状态

    • 数据一致性问题:在阶段 2 中,如果发生局部网络问题,一部分事务参与者收到了提交消息,另一部分事务参与者没收到提交消息,那么就导致了节点之间数据的不一致。 

    二:3PC(三阶段提交)方案 

    方案简介

     

    三阶段提交协议,是二阶段提交协议的改进版本,与二阶段提交不同的是,引入超时机制。同时在协调者和参与者中都引入超时机制。 

    三阶段提交将二阶段的准备阶段拆分为 2 个阶段,插入了一个 preCommit 阶段,使得原先在二阶段提交中,参与者在准备之后,由于协调者发生崩溃或错误,而导致参与者处于无法知晓是否提交或者中止的“不确定状态”所产生的可能相当长的延时的问题得以解决。 

    处理流程 

    阶段 1:canCommit 

    • 协调者向参与者发送 commit 请求,参与者如果可以提交就返回 yes 响应(参与者不执行事务操作),否则返回 no 响应:
    • 协调者向所有参与者发出包含事务内容的 canCommit 请求,询问是否可以提交事务,并等待所有参与者答复。

    • 参与者收到 canCommit 请求后,如果认为可以执行事务操作,则反馈 yes 并进入预备状态,否则反馈 no。 

    阶段 2:preCommit 

    协调者根据阶段 1 canCommit 参与者的反应情况来决定是否可以进行基于事务的 preCommit 操作。根据响应情况,有以下两种可能。

    情况 1:阶段 1 所有参与者均反馈 yes,参与者预执行事务,如上图: 

    • 协调者向所有参与者发出 preCommit 请求,进入准备阶段。

    • 参与者收到 preCommit 请求后,执行事务操作,将 undo 和 redo 信息记入事务日志中(但不提交事务)。

    • 各参与者向协调者反馈 ack 响应或 no 响应,并等待最终指令。

    情况 2:阶段 1 任何一个参与者反馈 no,或者等待超时后协调者尚无法收到所有参与者的反馈,即中断事务,如上图:

    • 协调者向所有参与者发出 abort 请求。

    • 无论收到协调者发出的 abort 请求,或者在等待协调者请求过程中出现超时,参与者均会中断事务。 

    阶段 3:do Commit

     

    该阶段进行真正的事务提交,也可以分为以下两种情况。

    情况 1:阶段 2 所有参与者均反馈 ack 响应,执行真正的事务提交,如上图: 

    • 如果协调者处于工作状态,则向所有参与者发出 do Commit 请求。

    • 参与者收到 do Commit 请求后,会正式执行事务提交,并释放整个事务期间占用的资源。

    • 各参与者向协调者反馈 ack 完成的消息。

    • 协调者收到所有参与者反馈的 ack 消息后,即完成事务提交。

    情况 2:阶段 2 任何一个参与者反馈 no,或者等待超时后协调者尚无法收到所有参与者的反馈,即中断事务,如上图: 

    • 如果协调者处于工作状态,向所有参与者发出 abort 请求。

    • 参与者使用阶段 1 中的 undo 信息执行回滚操作,并释放整个事务期间占用的资源。

    • 各参与者向协调者反馈 ack 完成的消息。

    • 协调者收到所有参与者反馈的 ack 消息后,即完成事务中断。

     

    注意:进入阶段 3 后,无论协调者出现问题,或者协调者与参与者网络出现问题,都会导致参与者无法接收到协调者发出的 do Commit 请求或 abort 请求。此时,参与者都会在等待超时之后,继续执行事务提交。

     

    方案总结 

    优点:相比二阶段提交,三阶段提交降低了阻塞范围,在等待超时后协调者或参与者会中断事务。避免了协调者单点问题,阶段 3 中协调者出现问题时,参与者会继续提交事务。

     缺点:数据不一致问题依然存在,当在参与者收到 preCommit 请求后等待 do commite 指令时,此时如果协调者请求中断事务,而协调者无法与参与者正常通信,会导致参与者继续提交事务,造成数据不一致。

     

    三:TCC 事务:最终一致性

     

    方案简介 

    TCC(Try-Confirm-Cancel)的概念,最早是由 Pat Helland 于 2007 年发表的一篇名为《Life beyond Distributed Transactions:an Apostate’s Opinion》的论文提出。

     

    TCC 是服务化的二阶段编程模型,其 Try、Confirm、Cancel 3 个方法均由业务编码实现:

    • Try 操作作为一阶段,负责资源的检查和预留。

    • Confirm 操作作为二阶段提交操作,执行真正的业务。

    • Cancel 是预留资源的取消。

     

    TCC 事务的 Try、Confirm、Cancel 可以理解为 SQL 事务中的 Lock、Commit、Rollback。

     

    处理流程 

    为了方便理解,下面以电商下单为例进行方案解析,这里把整个过程简单分为扣减库存,订单创建 2 个步骤,库存服务和订单服务分别在不同的服务器节点上。

     ①Try 阶段 

    从执行阶段来看,与传统事务机制中业务逻辑相同。但从业务角度来看,却不一样。 

    TCC 机制中的 Try 仅是一个初步操作,它和后续的确认一起才能真正构成一个完整的业务逻辑,这个阶段主要完成: 

    • 完成所有业务检查( 一致性 ) 。

    • 预留必须业务资源( 准隔离性 ) 。

    • Try 尝试执行业务。 

    TCC 事务机制以初步操作(Try)为中心的,确认操作(Confirm)和取消操作(Cancel)都是围绕初步操作(Try)而展开。 

    因此,Try 阶段中的操作,其保障性是最好的,即使失败,仍然有取消操作(Cancel)可以将其执行结果撤销。

    假设商品库存为 100,购买数量为 2,这里检查和更新库存的同时,冻结用户购买数量的库存,同时创建订单,订单状态为待确认。

     

    ②Confirm / Cancel 阶段

     

    根据 Try 阶段服务是否全部正常执行,继续执行确认操作(Confirm)或取消操作(Cancel)。  

    Confirm 和 Cancel 操作满足幂等性,如果 Confirm 或 Cancel 操作执行失败,将会不断重试直到执行完成。 

    Confirm:当 Try 阶段服务全部正常执行, 执行确认业务逻辑操作

     

    这里使用的资源一定是 Try 阶段预留的业务资源。在 TCC 事务机制中认为,如果在 Try 阶段能正常的预留资源,那 Confirm 一定能完整正确的提交。 

    Confirm 阶段也可以看成是对 Try 阶段的一个补充,Try+Confirm 一起组成了一个完整的业务逻辑。

     Cancel:当 Try 阶段存在服务执行失败, 进入 Cancel 阶段

     

    Cancel 取消执行,释放 Try 阶段预留的业务资源,上面的例子中,Cancel 操作会把冻结的库存释放,并更新订单状态为取消。

     

    方案总结

     

    TCC 事务机制相对于传统事务机制(X/Open XA),TCC 事务机制相比于上面介绍的 XA 事务机制,有以下优点:

    • 性能提升:具体业务来实现控制资源锁的粒度变小,不会锁定整个资源。 

    • 数据最终一致性:基于 Confirm 和 Cancel 的幂等性,保证事务最终完成确认或者取消,保证数据的一致性。

    • 可靠性:解决了 XA 协议的协调者单点故障问题,由主业务方发起并控制整个业务活动,业务活动管理器也变成多点,引入集群。

     

    缺点: TCC 的 Try、Confirm 和 Cancel 操作功能要按具体业务来实现,业务耦合度较高,提高了开发成本。

     

    四: 本地消息表:最终一致性

     

      

    方案简介 

    本地消息表的方案最初是由 eBay 提出,核心思路是将分布式事务拆分成本地事务进行处理。 

    方案通过在事务主动发起方额外新建事务消息表,事务发起方处理业务和记录事务消息在本地事务中完成,轮询事务消息表的数据发送事务消息,事务被动方基于消息中间件消费事务消息表中的事务。 

    这样设计可以避免”业务处理成功 + 事务消息发送失败",或"业务处理失败 + 事务消息发送成功"的棘手情况出现,保证 2 个系统事务的数据一致性。

     

    处理流程 

    下面把分布式事务最先开始处理的事务方称为事务主动方,在事务主动方之后处理的业务内的其他事务称为事务被动方。 

    为了方便理解,下面继续以电商下单为例进行方案解析,这里把整个过程简单分为扣减库存,订单创建 2 个步骤。 

    库存服务和订单服务分别在不同的服务器节点上,其中库存服务是事务主动方,订单服务是事务被动方。 

    事务的主动方需要额外新建事务消息表,用于记录分布式事务的消息的发生、处理状态。 

    整个业务处理流程如下:

    步骤1:事务主动方处理本地事务。

     事务主动方在本地事务中处理业务更新操作和写消息表操作。上面例子中库存服务阶段在本地事务中完成扣减库存和写消息表(图中 1、2)。

     

    步骤 2:事务主动方通过消息中间件,通知事务被动方处理事务通知事务待消息。 

    消息中间件可以基于 Kafka、RocketMQ 消息队列,事务主动方主动写消息到消息队列,事务消费方消费并处理消息队列中的消息。 

    上面例子中,库存服务把事务待处理消息写到消息中间件,订单服务消费消息中间件的消息,完成新增订单(图中 3 - 5)。

     

    步骤 3:事务被动方通过消息中间件,通知事务主动方事务已处理的消息。 

    上面例子中,订单服务把事务已处理消息写到消息中间件,库存服务消费中间件的消息,并将事务消息的状态更新为已完成(图中 6 - 8)。 

    为了数据的一致性,当处理错误需要重试,事务发送方和事务接收方相关业务处理需要支持幂等。 

    具体保存一致性的容错处理如下:

    • 当步骤 1 处理出错,事务回滚,相当于什么都没发生。

    • 当步骤 2、步骤 3 处理出错,由于未处理的事务消息还是保存在事务发送方,事务发送方可以定时轮询为超时消息数据,再次发送到消息中间件进行处理。事务被动方消费事务消息重试处理。

    • 如果是业务上的失败,事务被动方可以发消息给事务主动方进行回滚。

    • 如果多个事务被动方已经消费消息,事务主动方需要回滚事务时需要通知事务被动方回滚。

     

    方案总结

     

    方案的优点如下: 

    • 从应用设计开发的角度实现了消息数据的可靠性,消息数据的可靠性不依赖于消息中间件,弱化了对 MQ 中间件特性的依赖。 

    • 方案轻量,容易实现。

    缺点如下:

    • 与具体的业务场景绑定,耦合性强,不可公用。

    • 消息数据与业务数据同库,占用业务系统资源。

    • 业务系统在使用关系型数据库的情况下,消息服务性能会受到关系型数据库并发性能的局限。

     

    五:MQ 事务:最终一致性 

      

     

     

      

    方案简介

     基于 MQ 的分布式事务方案其实是对本地消息表的封装,将本地消息表基于 MQ 内部,其他方面的协议基本与本地消息表一致。

     

    处理流程

     

    下面主要基于 RocketMQ 4.3 之后的版本介绍 MQ 的分布式事务方案。 

    在本地消息表方案中,保证事务主动方发写业务表数据和写消息表数据的一致性是基于数据库事务,RocketMQ 的事务消息相对于普通 MQ,相对于提供了 2PC 的提交接口,方案如下:

     

    正常情况:事务主动方发消息 

     

    这种情况下,事务主动方服务正常,没有发生故障,发消息流程如下:

    • 图中 1:发送方向 MQ 服务端(MQ Server)发送 half 消息。

    • 图中 2:MQ Server 将消息持久化成功之后,向发送方 ack 确认消息已经发送成功。

    • 图中 3:发送方开始执行本地事务逻辑。

    • 图中 4:发送方根据本地事务执行结果向 MQ Server 提交二次确认(commit 或是 rollback)。

    • 图中 5:MQ Server 收到 commit 状态则将半消息标记为可投递,订阅方最终将收到该消息;MQ Server 收到 rollback 状态则删除半消息,订阅方将不会接受该消息。

     

    异常情况:事务主动方消息恢复

      

     在断网或者应用重启等异常情况下,图中 4 提交的二次确认超时未到达 MQ Server,此时处理逻辑如下:

    • 图中 5:MQ Server 对该消息发起消息回查。

    • 图中 6:发送方收到消息回查后,需要检查对应消息的本地事务执行的最终结果。

    • 图中 7:发送方根据检查得到的本地事务的最终状态再次提交二次确认。

    • 图中 8:MQ Server基于 commit/rollback 对消息进行投递或者删除。

     

    介绍完 RocketMQ 的事务消息方案后,由于前面已经介绍过本地消息表方案,这里就简单介绍 RocketMQ 分布式事务: 

    事务主动方基于 MQ 通信通知事务被动方处理事务,事务被动方基于 MQ 返回处理结果。 

    如果事务被动方消费消息异常,需要不断重试,业务处理逻辑需要保证幂等。  

    如果是事务被动方业务上的处理失败,可以通过 MQ 通知事务主动方进行补偿或者事务回滚。

     

    方案总结

     

    相比本地消息表方案,MQ 事务方案优点是: 

    • 消息数据独立存储 ,降低业务系统与消息系统之间的耦合。

    • 吞吐量由于使用本地消息表方案。 

    缺点是: 

    • 一次消息发送需要两次网络请求(half 消息 + commit/rollback 消息) 。

    • 业务处理服务需要实现消息状态回查接口。 

     

    总结

     

    各方案使用场景

     

    介绍完分布式事务相关理论和常见解决方案后,最终的目的在实际项目中运用,因此,总结一下各个方案的常见的使用场景:

    • 2PC/3PC:依赖于数据库,能够很好的提供强一致性和强事务性,但相对来说延迟比较高,比较适合传统的单体应用,在同一个方法中存在跨库操作的情况,不适合高并发和高性能要求的场景。

    • TCC:适用于执行时间确定且较短,实时性要求高,对数据一致性要求高,比如互联网金融企业最核心的三个服务:交易、支付、账务。

    • 本地消息表/MQ 事务:都适用于事务中参与方支持操作幂等,对一致性要求不高,业务上能容忍数据不一致到一个人工检查周期,事务涉及的参与方、参与环节较少,业务上有对账/校验系统兜底。 

    说在最后: 一般不用分布式事务,系统太复杂,性能降低,吞吐量下降,常用解决方案:监控,记录错误日志,发送邮件 ,排查问题,修复数据(执行sql

    资金,交易,订单 用分布式事务,积分,优惠券没必要用分布式事务。

  • 相关阅读:
    项目实战从 0 到 1 学习之Flink (24)Flink将kafka的数据存到redis中
    LeetCode107. 二叉树的层次遍历 II
    LeetCode102. 二叉树的层序遍历
    LeetCode341. 扁平化嵌套列表迭代器
    【总结】二叉树的前中后序遍历(递归和非递归)
    LeetCode145. 二叉树的后序遍历
    LeetCode94. 二叉树的中序遍历
    LeetCode144. 二叉树的前序遍历
    LeetCode71. 简化路径
    LeetCode150. 逆波兰表达式求值
  • 原文地址:https://www.cnblogs.com/fanBlog/p/11083017.html
Copyright © 2011-2022 走看看