zoukankan      html  css  js  c++  java
  • 2019 SDN上机第5次作业

    1.浏览RYU官网学习RYU控制器的安装和RYU开发入门教程,提交你对于教程代码的理解,包括但不限于:

    • 描述官方教程实现了一个什么样的交换机功能?
      该应用程序使用OFPP_FLOOD标志来指示应在所有端口上发送数据包。
    • 控制器设定交换机支持什么版本的OpenFlow?
      OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]
      OpenFlow v1.0
    • 控制器设定了交换机如何处理数据包?
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)#修饰器,告诉Ryu什么时候调用修饰的函数,用“ MAIN_DISPATCHER”作为第二个参数表示仅在协商完成后才调用此函数。
    #当Ryu收到OpenFlow packet_in消息时,将调用此方法
        def packet_in_handler(self, ev):
            msg = ev.msg#packet_in数据结构的对象
            dp = msg.datapath#数据路径的对象
            ofp = dp.ofproto
            ofp_parser = dp.ofproto_parser
            #dp.ofproto和dp.ofproto_parser是代表Ryu和交换机协商的OpenFlow协议的对象。
            actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
            #指定要从中发送数据包的交换机端口,使用OFPP_FLOOD标志来指示应在所有端口上发送数据包。
            out = ofp_parser.OFPPacketOut(
                datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
                actions=actions)
            #用于构建packet_out消息
            dp.send_msg(out)
            #如果使用OpenFlow消息类对象调用Datapath类的send_msg方法,则Ryu会生成联机数据格式并将其发送到交换机。
    

    2.根据官方教程和提供的示例代码(SimpleSwitch.py),将具有自学习功能的交换机代码(SelfLearning.py)补充完整

    from ryu.base import app_manager
    from ryu.controller import ofp_event
    from ryu.controller.handler import MAIN_DISPATCHER
    from ryu.controller.handler import set_ev_cls
    from ryu.ofproto import ofproto_v1_0
    
    from ryu.lib.mac import haddr_to_bin
    from ryu.lib.packet import packet
    from ryu.lib.packet import ethernet
    from ryu.lib.packet import ether_types
    
    
    class SimpleSwitch(app_manager.RyuApp):
        # TODO define OpenFlow 1.0 version for the switch
        # add your code here
        OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]
    
        def __init__(self, *args, **kwargs):
            super(SimpleSwitch, self).__init__(*args, **kwargs)
            self.mac_to_port = {}
        
        
        def add_flow(self, datapath, in_port, dst, src, actions):
            ofproto = datapath.ofproto
    
            match = datapath.ofproto_parser.OFPMatch(
                in_port=in_port,
                dl_dst=haddr_to_bin(dst), dl_src=haddr_to_bin(src))
    
             mod = datapath.ofproto_parser.OFPFlowMod(
                datapath=datapath, match=match, cookie=0,
                command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0,
                priority=ofproto.OFP_DEFAULT_PRIORITY,
                flags=ofproto.OFPFF_SEND_FLOW_REM, actions=actions)
            # TODO send modified message out
            # add your code here
            datapath.send_msg(mod)
    
        @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
        def _packet_in_handler(self, ev):
            msg = ev.msg
            datapath = msg.datapath
            ofproto = datapath.ofproto
    
            pkt = packet.Packet(msg.data)
            eth = pkt.get_protocol(ethernet.ethernet)
    
            if eth.ethertype == ether_types.ETH_TYPE_LLDP:
                # ignore lldp packet
                return
            if eth.ethertype == ether_types.ETH_TYPE_IPV6:
                # ignore ipv6 packet
                return       
    		
            dst = eth.dst
            src = eth.src
            dpid = datapath.id
            self.mac_to_port.setdefault(dpid, {})
    
            self.logger.info("packet in DPID:%s MAC_SRC:%s MAC_DST:%s IN_PORT:%s", dpid, src, dst, msg.in_port)
    
            # learn a mac address to avoid FLOOD next time.
            self.mac_to_port[dpid][src] = msg.in_port
    
            if dst in self.mac_to_port[dpid]:
                out_port = self.mac_to_port[dpid][dst]
            else:
                out_port = ofproto.OFPP_FLOOD
            # add your code here
            actions = [datapath.ofproto_parser.OFPActionOutput(out_port)]
    
    
            # install a flow to avoid packet_in next time
            if out_port != ofproto.OFPP_FLOOD:
                self.logger.info("add flow s:DPID:%s Match:[ MAC_SRC:%s MAC_DST:%s IN_PORT:%s ], Action:[OUT_PUT:%s] ", dpid, src, dst, msg.in_port, out_port)
            self.add_flow(datapath, msg.in_port, dst, src, actions)
    
            data = None
            if msg.buffer_id == ofproto.OFP_NO_BUFFER:
                data = msg.data
            
    
            # TODO define the OpenFlow Packet Out
            # add your code here
            out = datapath.ofproto_parser.OFPPacketOut(datapath=datapath,buffer_id=msg.buffer_id,in_port=msg.in_port,actions=actions,data=data)
            datapath.send_msg(out)
            print ("PACKET_OUT...")
    

    3.在mininet创建一个最简拓扑,并连接RYU控制器

    - py代码 ``` from mininet.topo import Topo from mininet.net import Mininet from mininet.node import RemoteController,CPULimitedHost from mininet.link import TCLink from mininet.util import dumpNodeConnections

    class MyTopo( Topo ):
    "Simple topology example."

    def __init__( self ):
        "Create custom topo."
    
        Topo.__init__( self )
    
    switchs = []
        sw = self.addSwitch("s{}".format(1))
        switchs.append(sw)	
    
        for sw in switchs:
            for i in range(2):
                h = self.addHost("h{}".format(i+1))
                self.addLink(sw, h)
    

    topos = { 'mytopo': ( lambda: MyTopo() ) }

    - 运行结果:
    <img src="https://img2018.cnblogs.com/blog/1794540/201911/1794540-20191127143524387-1141731968.png" width = 70% height = 70% />
    
    - 连接ryu控制器:
    <img src="https://img2018.cnblogs.com/blog/1794540/201911/1794540-20191127182256119-344024466.png" width = 70% height = 70% />
    
    ##4.验证自学习交换机的功能,提交分析过程和验证结果
    - 在mininet中查看s1当前流表:
    <img src="https://img2018.cnblogs.com/blog/1794540/201911/1794540-20191127182813297-565669243.png" width = 60% height = 60% />
    
    - pingall:
    <img src="https://img2018.cnblogs.com/blog/1794540/201911/1794540-20191127183442554-348029791.png" width = 50% height = 50% />
    <img src="https://img2018.cnblogs.com/blog/1794540/201911/1794540-20191127183511528-706854919.png" width = 80% height = 80% />
    
    - 再次查看s1当前流表:
    <img src="https://img2018.cnblogs.com/blog/1794540/201911/1794540-20191127183728496-1078533125.png" width = 80% height = 80% />
    
    ##5.写下你的实验体会
    - 自学习交换机工作流程:
    h1发送报文给交换机->交换机接受报文,记录MAC地址并将报文转发广播,h2接收报文,发送paket_in,交换机收到并记录MAC地址。
    - 体会:
    软件的安装和卸载才是最花时间的部分(哭了),
  • 相关阅读:
    【总结】Centos中,Kerberos安装
    Go语言mgo
    Go语言mgo
    理解 Serenity,Part-1:深度抽象
    ZCash零知识证明
    零知识证明(Zero-Knowledge Proof)原理详解:非交互式证明实现自动验证防止作假
    tf.shape(x)、x.shape、x.get_shape()函数解析(最清晰的解释)
    Java生成(m.n)之间的随机数
    tf.cond()函数解析(最清晰的解释)
    OpenStack Blazar 架构解析与功能实践
  • 原文地址:https://www.cnblogs.com/fangdaoyou/p/11937981.html
Copyright © 2011-2022 走看看