康拓展开和逆康拓展开
复杂度O((n^2))的会tle(看数据就知道了)(虽然某题解说可以,不知道是不是后期加强了数据
然而我还是写了O((n^2))的
#include <cstdio>
typedef long long LL;
LL f[1000010];
const LL mod = 998244353;
int a[1000010], b[1000010];
int main() {
f[0] = 1;
for(int i = 1; i < 1000005; i++) f[i] = f[i-1] * i % mod;
int n;
while(~scanf("%d", &n)) {
for(int i = 0; i < n; i++) {
scanf("%d", &a[i]);
b[a[i]] = 0;
}
LL ans = 1, cnt;
for(int i = 0; i < n; i++) {
cnt = 0;
for(int j = 1; j < a[i]; j++) {
if(b[j] == 0) cnt++;
}
b[a[i]] = 1;
ans = ans % mod + cnt * f[n - i - 1];
}
printf("%lld
", ans % mod);
}
return 0;
}
下面这个是树状数组实现的,复杂度O(nlogn) (能过)
#include <cstdio>
typedef long long LL;
LL f[1000010];
const LL mod = 998244353;
int a[1000010], n, bit[1000010];
void add(int i, int x) {
while(i <= n) {
bit[i] += x;
i += i & (-i);
}
}
int query(int i) {
int res = 0;
while(i > 0) {
res += bit[i];
i -= i & (-i);
}
return res;
}
int main() {
f[0] = 1;
for(int i = 1; i < 1000005; i++) f[i] = f[i-1] * i % mod;
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
add(a[i], 1);
}
LL ans = 1, cnt;
for(int i = 1; i <= n; i++) {
add(a[i], -1);
cnt = query(a[i]);
ans = ans % mod + cnt * f[n - i];
}
printf("%lld
", ans % mod);
return 0;
}
逆康拓展开O((n^2))
#include <cstdio>
#include <cstring>
int main() {
int n, k, f[15], b[15];
f[0] = 1;
for(int i = 1; i < 11; i++) f[i] = f[i-1] * i;
while(~scanf("%d %d", &n, &k)) {
memset(b, 0, sizeof(b));
k--;
for(int i = n - 1; i >= 0; i--) {
int ans = k / f[i], cnt = 0;
for(int j = 1; j <= n; j++) {
if(cnt == ans && b[j] == 0) {
b[j] = 1;
printf("%d ", j);
break;
}
if(b[j] == 0) cnt++;
}
k = k % f[i];
}
printf("
");
}
return 0;
}
复杂度更低的我还不会 呜呜我好菜