zoukankan      html  css  js  c++  java
  • lucas+CRT

    lucas+CRT

    #10229. 「一本通 6.6 例 4」古代猪文

    题目是要求(g^{sum{C_{n}^{n/i}}}) % 999911659;(i能整除n)

    模数是质数,phi[999911659] = 999911658, 根据欧拉降幂,g的幂数可以%phi[999911659],由于此时的模数不是一个质数,然后就想着用exlucas来求,但是亲测这样会TLE,所以就只能把999911658拆成4个质数,用lucas结合CRT来求。

    假设n是(C_{n}^{m}) ,a[i]是999911658的素数因子,n % a[i] = b[j],根据方程组用CRT就可以求出(C_{n}^{m})

    #include <cstdio>
    #define LL long long
    using namespace std;
    void exgcd(LL a, LL b, LL &x, LL &y) {
        if (!b) {
            x = 1, y = 0;
            return;
        }
        exgcd(b, a % b, x, y);
        LL t = x;
        x = y;
        y = t - (a / b) * y;
    }
    LL inv(LL a, LL b) {
        LL x, y;
        exgcd(a, b, x, y);
        return (x % b + b) % b;
    }
    LL C(LL n, LL m, LL mod) {
        if(n == m) return 1;
       	LL inv[36000];
       	inv[1] = 1;
       	inv[0] = 1;
        LL f = 1;
        for(int i = n - m + 1; i <= n; i++) f = f * i % mod;//(n-m+1)*(n-m+2)*...*n
        for(int i = 2; i <= m; i++) inv[i] = (mod - mod / i) * 1LL * inv[mod % i] % mod;//打表1~m关于mod的逆元
        for(int i = 2; i <= m; i++) inv[i] = inv[i] * inv[i-1] % mod;//m!关于mod的逆元
        return (f * inv[m]) % mod;
    }
    LL lucas(LL n, LL m, LL mod) {
        if(m == 0) return 1LL;
        return (C(n % mod, m % mod, mod) * lucas(n / mod, m / mod, mod)) % mod;
    }
    LL power_mod(LL a, LL b, LL p) {
        LL ret = 1;
        while(b) {
            if(b & 1) ret = ret * a % p;
            a = a * a % p;
            b >>= 1;
        }
        return ret;
    }
    int main() {
        LL mmod = 999911659;
        LL nmod[5] = {2, 3, 4679, 35617};
        LL n, g, ans = 1, sum = 999911658;
        scanf("%lld %lld", &n, &g);
        for (LL i = 1; i * i <= n; i++) {
            if (n % i == 0) {
                LL a[5], b[5];
                for(int j = 0; j < 4; j++) {
                    b[j] = lucas(n, i, nmod[j]);
                    a[j] = nmod[j];
                }
                LL num = 0;
                for(int j = 0; j < 4; j++) {
                    num = (num + (sum / a[j]) * b[j] * inv(sum / a[j], a[j])) % sum;
                }
                num = num % sum;
                ans = ans * power_mod(g, num, mmod) % mmod;
                if (i * i != n) {
                    for(int j = 0; j < 4; j++) {
                        b[j] = lucas(n, n/i, nmod[j]);
                        a[j] = nmod[j];
                        //printf("b %lld
    ", b[j]);
                    }
                    //printf("i sum %lld %lld
    ", i, num);
                    num = 0;
                    for(int j = 0; j < 4; j++) {
                        num = (num + (sum / a[j]) * b[j] * inv(sum / a[j], a[j])) % sum;
                        //printf("%d %lld
    ",j, num);
                    }
                    num = num % sum;
                    ans = ans * power_mod(g, num, mmod) % mmod;
                }
            }
        }
        printf("%lld
    ", ans % mmod);
        return 0;
    }
    
  • 相关阅读:
    浏览器输入一个url到整个页面显示出来经历了哪些过程?
    ajax
    为什么JS是单线程?JS中的Event Loop(事件循环)?JS如何实现异步?setimeout?
    jQuery中ready方法的实现
    this+call、apply、bind的区别与使用
    内存泄漏、垃圾回收机制、哪些情况会导致内存泄漏
    浏览器同源策略和跨域方法
    node.js
    JS原型、原型链、构造函数、实例与继承
    JS常用操作节点的方法
  • 原文地址:https://www.cnblogs.com/fanshhh/p/12641793.html
Copyright © 2011-2022 走看看