zoukankan      html  css  js  c++  java
  • 多路复用IO(了解)

    多路复用IO(IO multiplexing)

    IO multiplexing这个词可能有点陌生,但是如果我说select/epoll,大概就都能明白了。有些地方也称这种IO方式为事件驱动IO(event driven IO)。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

    当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,
    当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。  
    这个图和blocking IO的图其实并没有太大的不同,事实上还更差一些。因为这里需要使用两个系统调用(select和recvfrom),
    而blocking IO只调用了一个系统调用(recvfrom)。但是,用select的优势在于它可以同时处理多个connection。
    

    强调:

    1. 如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。

    2. 在多路复用模型中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

    结论: select的优势在于可以处理多个连接,不适用于单个连接

    select网络IO模型示例

    #服务端
    import socket
    import select
    
    server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    server.bind(("127.0.0.1", 8080))
    server.listen(5)
    server.setblocking(False)    # 默认是True为阻塞
    print("starting.....")
    
    rlist = [server, ]     # 专门存收消息的套接字(server和conn)
    wlist = []     # 专门存发的套接字
    wdata = {}
    
    while True:
        rl, wl, xl = select.select(rlist, wlist, [], 0.5)     # []存放异常列表,0.5超时时间(每个0.5s问操作系统)
        print("rl", rl)
        print("wl", wl)
    
        for sock in rl:
            if sock == server:
                conn, addr = sock.accept()
                rlist.append(conn)
            else:
                try:
                    data = sock.recv(1024)
                    # if not data:       # 针对linux系统
                    #     sock.close()
                    #     rlist.remove()
                    #     continue
                    wlist.append(sock)
                    wdata[sock] = data.upper()
                except Exception:
                    sock.close()
                    rl.remove(sock)
    
        for sock in wl:
            data = wdata[sock]
            sock.send(data)
            wlist.remove(sock)
            wdata.pop(sock)  
    #客户端 
    import socket
    
    client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    client.connect(("127.0.0.1", 8080))
    
    while True:
        msg = input(">>>:").strip()
        if not msg:
            continue
        client.send(msg.encode("utf-8"))
        data = client.recv(1024)
        print(data.decode("utf-8"))

    select监听fd变化的过程分析:

    用户进程创建socket对象,拷贝监听的fd到内核空间,每一个fd会对应一张系统文件表,内核空间的fd响应到数据后,
    就会发送信号给用户进程数据已到;
    用户进程再发送系统调用,比如(accept)将内核空间的数据copy到用户空间,同时作为接受数据端内核空间的数据清除,
    这样重新监听时fd再有新的数据又可以响应到了(发送端因为基于TCP协议所以需要收到应答后才会清除)。
    

    该模型的优点

    相比其他模型,使用select() 的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多 CPU,同时能够为多客户端提供服务。如果试图建立一个简单的事件驱动的服务器程序,这个模型有一定的参考价值。

    该模型的缺点

    首先select()接口并不是实现“事件驱动”的最好选择。因为当需要探测的句柄值较大时,select()接口本身需要消耗大量时间去轮询各个句柄。 很多操作系统提供了更为高效的接口,如linux提供了epoll,BSD提供了kqueue,Solaris提供了/dev/poll,…。 如果需要实现更高效的服务器程序,类似epoll这样的接口更被推荐。遗憾的是不同的操作系统特供的epoll接口有很大差异, 所以使用类似于epoll的接口实现具有较好跨平台能力的服务器会比较困难。 其次,该模型将事件探测和事件响应夹杂在一起,一旦事件响应的执行体庞大,则对整个模型是灾难性的。

  • 相关阅读:
    阿里消息队列中间件 RocketMQ 源码分析 —— Message 拉取与消费(上)
    数据库中间件 ShardingJDBC 源码分析 —— SQL 解析(三)之查询SQL
    数据库分库分表中间件 ShardingJDBC 源码分析 —— SQL 解析(六)之删除SQL
    数据库分库分表中间件 ShardingJDBC 源码分析 —— SQL 解析(五)之更新SQL
    消息队列中间件 RocketMQ 源码分析 —— Message 存储
    源码圈 300 胖友的书单整理
    数据库分库分表中间件 ShardingJDBC 源码分析 —— SQL 路由(一)分库分表配置
    数据库分库分表中间件 ShardingJDBC 源码分析 —— SQL 解析(四)之插入SQL
    数据库分库分表中间件 ShardingJDBC 源码分析 —— SQL 路由(二)之分库分表路由
    C#中Math类的用法
  • 原文地址:https://www.cnblogs.com/fantsaymwq/p/10162889.html
Copyright © 2011-2022 走看看