zoukankan      html  css  js  c++  java
  • F

    Description

    To calculate the circumference of a circle seems to be an easy task - provided you know its diameter. But what if you don't?        
    You are given the cartesian coordinates of three non-collinear points in the plane.         Your job is to calculate the circumference of the unique circle that intersects all three points.        
     

    Input

    The input will contain one or more test cases. Each test case consists of one line containing six real numbers x1,y1, x2,y2,x3,y3, representing the coordinates of the three points. The diameter of the circle determined by the three points will never exceed a million. Input is terminated by end of file.
     

    Output

    For each test case, print one line containing one real number telling the circumference of the circle determined by the three points. The circumference is to be printed accurately rounded to two decimals. The value of pi is approximately 3.141592653589793.
     

    Sample Input

    0.0 -0.5 0.5 0.0 0.0 0.5
    0.0 0.0 0.0 1.0 1.0 1.0
    5.0 5.0 5.0 7.0 4.0 6.0
    0.0 0.0 -1.0 7.0 7.0 7.0
    50.0 50.0 50.0 70.0 40.0 60.0
    0.0 0.0 10.0 0.0 20.0 1.0
    0.0 -500000.0 500000.0 0.0 0.0 500000.0
    

    Sample Output

    3.14
    4.44
    6.28
    31.42
    62.83
    632.24
    3141592.65
    

    #include <iostream>
    #include<iomanip>
    #include <cmath>
    using namespace std;
    #define PI 3.141592653589793
    int main()
    {
        double x1,y1,x2,y2,x3,y3;
        while(cin>>x1>>y1>>x2>>y2>>x3>>y3){
            double l,a1,b1,a2,b2,k1,k2,a,b;
            a1=x1/2+x2/2;
            a2=x1/2+x3/2;
            b1=y1/2+y2/2;
            b2=y1/2+y3/2;
            if(y1!=y2&&y3!=y1){
            k1=(x1-x2)/(y2-y1);
            k2=(x1-x3)/(y3-y1);
            a=(k1*a1-k2*a2+b2-b1)/(k1-k2);
            b=k1*(a-a1)+b1;
            }
            else if(y1==y2){
                k2=(x1-x3)/(y3-y1);
                a=(x1+x2)/2;
                b=k2*(a-a2)+b2;
            }
            else {
                k1=(x1-x2)/(y2-y1);
                a=(x1+x3)/2;
                b=k1*(a-a1)+b1;
            }
            l=2*PI*sqrt((a-x1)*(a-x1)+(b-y1)*(b-y1));
            cout.precision(2);
            cout.setf(ios::fixed); 
            cout<<l<<endl;
        }
        //system("pause");
        return 0;
    }
  • 相关阅读:
    centos,ubuntu下安装zabbix遇到的问题
    代理环境下使用 ADDAPTREPOSITORY 添加 PPA 软件源
    Linux文件系统挂载管理
    Log4j配置详解
    myeclipse快捷键
    Linux用户基础(用户和组)
    C语言I博客作业07
    C语言I博客作业02
    C语言I博客作业08
    C语言I博客作业04
  • 原文地址:https://www.cnblogs.com/farewell-farewell/p/5184095.html
Copyright © 2011-2022 走看看