zoukankan      html  css  js  c++  java
  • 性能指标

    对于二分类问题

    混淆矩阵####

    TP(真正例):将正类预测为正类
    FN(假反例):将正类预测为负类
    FP(假正例): 将负类预测为正类
    TN(真反例): 将负类预测为负类
    这么看,可能有点头晕,换个角度:

    • 第一个字母(T or F):表示预测值与真实值是否一致,一致的话为T,否则为F
    • 第二个字母(P or N):表示预测值为正(T)或者负(P)

    三个常用指标

    • 查准率:

    [P = frac{TP}{TP+FP} ]

    即在所有预测为正的样本里面真实值为正样本所占的比例

    • 召回率:

    [R=frac{TP}{TP+FN} ]

    FN样本的真实标签其实为正,故分母为所有真实值为正的样本数, 即该公式表示:
    所有真实值为正的样本中预测值也为正的样本数

    • F1值

    [F_{1}=frac{2}{frac{1}{P}+frac{1}{R}} ]

    P与R的调和均值,综合衡量的查准率与召回率

    mAP####

    目标检测中衡量识别精度的指标是mAP(mean average precision)。多个类别物体检测中,每一个类别都可以根据recall和precision绘制一条P-R曲线,AP就是该曲线下的面积,mAP是多个类别AP的平均值。
    而P-R曲线是如何绘制的呢?
    检测器输出每个检测结果都会对应一个detect confidence,我们会人为设定一个confidence阈值,如果检测结果高于confidence阈值,那预测该检测为正样本,否则为预测为负。
    显然,阈值设置越高,则查准率P越高,但相应召回率R就越底,我们可以通过设置不同的阈值得到P-R曲线。

    [ref] (http://blog.csdn.net/a1154761720/article/details/50864994)

  • 相关阅读:
    Java多线程学习笔记
    Java核心技术(卷二)
    学习问题记录
    Java Web 学习杂记
    Java Web 学习笔记
    正则表达式学习记录
    k8s与docker版本依赖关系
    docker commit采坑记录
    关于docker的配置文件与环境变量的小发现
    搭建怎么搭建独立的sftp服务
  • 原文地址:https://www.cnblogs.com/fariver/p/6675181.html
Copyright © 2011-2022 走看看