主要功能
- 多维 数据模型(时序由 metric 名字和 k/v 的 labels 构成)。
- 灵活的查询语句(PromQL)。
- 无依赖存储,支持 local 和 remote 不同模型。
- 采用 http 协议,使用 pull 模式,拉取数据,简单易懂。
- 监控目标,可以采用服务发现或静态配置的方式。
- 支持多种统计数据模型,图形化友好。、
核心组件
- Prometheus Server, 主要用于抓取数据和存储时序数据,另外还提供查询和 Alert Rule 配置管理。
- client libraries,用于对接 Prometheus Server, 可以查询和上报数据。
- push gateway ,用于批量,短期的监控数据的汇总节点,主要用于业务数据汇报等。
- 各种汇报数据的 exporters ,例如汇报机器数据的 node_exporter, 汇报 MongoDB 信息的 MongoDB exporter 等等。
- 用于告警通知管理的 alertmanager 。
基础架构
一图胜千言,先来张官方的架构图
从这个架构图,也可以看出 Prometheus 的主要模块包含, Server, Exporters, Pushgateway, PromQL, Alertmanager, WebUI 等。
它大致使用逻辑是这样:
- Prometheus server 定期从静态配置的 targets 或者服务发现的 targets 拉取数据。
- 当新拉取的数据大于配置内存缓存区的时候,Prometheus 会将数据持久化到磁盘(如果使用 remote storage 将持久化到云端)。
- Prometheus 可以配置 rules,然后定时查询数据,当条件触发的时候,会将 alert 推送到配置的 Alertmanager。
- Alertmanager 收到警告的时候,可以根据配置,聚合,去重,降噪,最后发送警告。
- 可以使用 API, Prometheus Console 或者 Grafana 查询和聚合数据。
prometheus和zabbix的对比
prometheus
Prometheus的基本原理是通过HTTP周期性抓取被监控组件的状态,任意组件只要提供对应的HTTP接口并且符合Prometheus定义的数据格式,就可以接入Prometheus监控。
Prometheus Server负责定时在目标上抓取metrics(指标)数据并保存到本地存储里面。Prometheus采用了一种Pull(拉)的方式获取数据,不仅降低客户端的复杂度,客户端只需要采集数据,无需了解服务端情况,而且服务端可以更加方便的水平扩展。
如果监控数据达到告警阈值Prometheus Server会通过HTTP将告警发送到告警模块alertmanger,通过告警的抑制后触发邮件或者webhook。Prometheus支持PromQL提供多维度数据模型和灵活的查询,通过监控指标关联多个tag的方式,将监控数据进行任意维度的组合以及聚合。
zabbix
zabbix由2部分构成,zabbix server与可选组件zabbix agent。zabbix server可以通过SNMP,zabbix agent,ping,端口监视等方法提供对远程服务器/网络状态的监视,数据收集等功能,它可以运行在Linux,Solaris,HP-UX,AIX,Free BSD,Open BSD,OS X等平台上。
核心组件主要是Agent和Server,其中Agent主要负责采集数据并通过主动或者被动的方式采集数据发送到Server/Proxy,除此之外,为了扩展监控项,Agent还支持执行自定义脚本。Server主要负责接收Agent发送的监控信息,并进行汇总存储,触发告警等。Zabbix Server将收集的监控数据存储到Zabbix Database中。Zabbix Database支持常用的关系型数据库,如果MySQL、PostgreSQL、Oracle等,默认是MySQL,并提供Zabbix Web页面(PHP编写)数据查询。
Zabbix由于使用了关系型数据存储时序数据,所以在监控大规模集群时常常在数据存储方面捉襟见肘。所以从Zabbix 4.2版本后开始支持TimescaleDB时序数据库,不过目前成熟度还不高。
综合对比