Equations are given in the format A / B = k
, where A
and B
are variables represented as strings, and k
is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0
.
Example:
Given a / b = 2.0, b / c = 3.0.
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? .
return [6.0, 0.5, -1.0, 1.0, -1.0 ].
The input is: vector<pair<string, string>> equations, vector<double>& values, vector<pair<string, string>> queries
, where equations.size() == values.size()
, and the values are positive. This represents the equations. Return vector<double>
.
According to the example above:
equations = [ ["a", "b"], ["b", "c"] ], values = [2.0, 3.0], queries = [ ["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"] ].
The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.
M1: graph + dfs
有向图,A/B=2 -> g[A][B] = 2.0, g[B][A] = 1/2.0,A/C = g[A][B] * g[B][C]
先建立graph,注意权重的处理。遍历query,只要有一个点不在graph里,就返回-1;如果两个点都在graph里,建立一个set防止重复访问,然后用dfs。dfs函数的递归终止条件是A = B,如果A不等于B,遍历A所有的邻居,如果当前邻居C已经访问过,continue;如果没有访问过,调用dfs(C, B),如果返回值 > 0,说明存在路径,返回d * g[A][C],即 C/B * A/C = A/B,如果没有符合条件的邻居,返回-1.
时间:O(E + Q*E),空间:O(E)
class Solution { public double[] calcEquation(String[][] equations, double[] values, String[][] queries) { HashMap<String, HashMap<String, Double>> graph = new HashMap<>(); for(int i = 0; i < equations.length; i++) { graph.putIfAbsent(equations[i][0], new HashMap<>()); graph.putIfAbsent(equations[i][1], new HashMap<>()); graph.get(equations[i][0]).put(equations[i][1], values[i]); graph.get(equations[i][1]).put(equations[i][0], 1.0 / values[i]); } double[] res = new double[queries.length]; for(int i = 0; i < queries.length; i++) { if(!graph.containsKey(queries[i][0]) || !graph.containsKey(queries[i][1])) { res[i] = -1.0; continue; } Set<String> visited = new HashSet<>(); res[i] = dfs(queries[i][0], queries[i][1], graph, visited); } return res; } // return A/B private double dfs(String A, String B, HashMap<String, HashMap<String, Double>> g, Set<String> visited) { if(A.equals(B)) return 1.0; visited.add(A); for(String C : g.get(A).keySet()) { if(visited.contains(C)) continue; double d = dfs(C, B, g, visited); // d = C/B if(d > 0) return d * g.get(A).get(C); // return C/B * A/C = A/B } return -1.0; } }
follow up:如果查询次数很多怎么提高效率
M2: union find
query很多的时候,因为uf中的路径经过压缩,平均时间O(1)(BFS每次query都要搜一遍图,query多时效率不高)。
时间:O(E + Q),空间:O(E)
class Solution { // parents["A"] = "B", val["A"] = 2.0} -> A = B * 2.0 -> A/B = 2.0 HashMap<String, String> parents = new HashMap<>(); HashMap<String, Double> val = new HashMap<>(); public double[] calcEquation(String[][] equations, double[] values, String[][] queries) { double[] res = new double[queries.length]; for(int i = 0; i < equations.length; i++) { String A = equations[i][0]; String B = equations[i][1]; double k = values[i]; if(!parents.containsKey(A) && !parents.containsKey(B)) { parents.put(A, A); parents.put(B, B); val.put(A, k); val.put(B, 1.0); } else if(!parents.containsKey(A)) { parents.put(A, A); val.put(A, val.get(B) * k); } else if(!parents.containsKey(B)) { parents.put(B, B); val.put(B, val.get(A) / k); } else { String rA = find(A); for (String key: parents.keySet()) { if (find(key).equals(rA)) { val.put(key, val.get(key) * k * val.get(B)); } } } union(A, B); } for(int i = 0; i < queries.length; i++) { String X = queries[i][0], Y = queries[i][1]; if (!val.containsKey(X) || !val.containsKey(Y) || !find(X).equals(find(Y))) res[i] = -1.0; else res[i] = val.get(X) / val.get(Y); } return res; } private String find(String C) { String p = parents.get(C); while (!p.equals(parents.get(p))) { p = parents.get(p); } String tmp = ""; String rC = parents.get(C); while (!rC.equals(parents.get(rC))) { tmp = parents.get(rC); parents.put(rC, p); rC = tmp; } return p; } private void union(String A, String B) { String rA = find(A); String rB = find(B); if (!rA.equals(rB)) { parents.put(rB, rA); } } }