Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example:
Input: [1,8,6,2,5,4,8,3,7] Output: 49
two pointers
p1, p2分别从首、尾开始扫描数组,同时计算面积。长方形面积中的底是一直在减小的(每次减少1),高是两条边中较短的边长,如果当前p1对应的边长小于p2对应的边长,应该保留较长的边(即p2),p2不变,p1向右移动,面积增大的可能性更大(理由:如果保留p1而移动p2,如果p2移动后变大,边长还是取较短的p1,如果p2移动后变小,边长取这个较小的新边长。新的边长 <= p1,即,移动后边长不会增加;但是如果保留p2而移动p1的话,如果p1移动后变大,边长可以取新的较大的边长或p2,即,移动后边长有增加的可能)。反之则应该移动p2。
时间:O(N),空间:O(1)
class Solution { public int maxArea(int[] height) { int p1 = 0, p2 = height.length - 1; int max = 0; while(p1 < p2) { int area = (p2 - p1) * Math.min(height[p1], height[p2]); max = Math.max(max, area); if(height[p1] < height[p2]) p1++; else p2--; } return max; } }