zoukankan      html  css  js  c++  java
  • 785. Is Graph Bipartite?

    Given an undirected graph, return true if and only if it is bipartite.

    Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B.

    The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists.  Each node is an integer between 0 and graph.length - 1.  There are no self edges or parallel edges: graph[i] does not contain i, and it doesn't contain any element twice.

    Example 1:
    Input: [[1,3], [0,2], [1,3], [0,2]]
    Output: true
    Explanation: 
    The graph looks like this:
    0----1
    |    |
    |    |
    3----2
    We can divide the vertices into two groups: {0, 2} and {1, 3}.
    
    Example 2:
    Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
    Output: false
    Explanation: 
    The graph looks like this:
    0----1
    |   |
    |   |
    3----2
    We cannot find a way to divide the set of nodes into two independent subsets.

    M1: BFS

    time: O(V + E), space: O(V)

    class Solution {
        public boolean isBipartite(int[][] graph) {
            int[] visited = new int[graph.length];
            for(int i = 0; i < graph.length; i++) {
                if(!BFS(graph, i, visited)) {
                    return false;
                }
            }
            return true;
        }
        
        private boolean BFS(int[][] graph, int node, int[] visited) {
            if(visited[node] != 0) {
                return true;
            }
            Queue<Integer> q = new LinkedList<>();
            q.offer(node);
            visited[node] = 1;
            while(!q.isEmpty()) {
                int cur = q.poll();
                int curColor = visited[cur];
                int neiColor = -curColor;
                for(int nei : graph[cur]) {
                    if(visited[nei] == 0) {
                        visited[nei] = neiColor;
                        q.offer(nei);
                    } else if(visited[nei] != neiColor) {
                        return false;
                    }
                }
            }
            return true;
        }
    }

    M2: DFS

    Graph Coloring (by DFS/BFS): color a node as red, and then color all its neighbors as blue recursively. if there's any conflict, return false.

    染色法 Graph Coloring (by DFS)
    将相连的两个顶点染成不同的颜色,一旦在染的过程中发现有两连的两个顶点已经被染成相同的颜色,说明不是二分图。
    -> 使用两种颜色,分别用1和-1来表示,初始时每个顶点用0表示未染色 
    -> 遍历每一个顶点,如果该顶点未被访问过,调用递归函数,如果返回false,说明不是二分图,直接返回false;
                 如果循环退出后没有返回false,则返回true。
    -> 在递归函数中,如果当前顶点已经染色:如果该顶点的颜色和将要染的颜色相同,则返回true;否则返回false。
                              如果没被染色,则将当前顶点染色(-1*color: 将相邻点染成不同颜色),然后再遍历与该顶点相连的所有的顶点,调用递归函数,如果返回false了,则当前递归函数的返回false,循环结束返回true.
     
    time: O(V+E), space: O(V+E)
    class Solution {
        int[] colors;
        public boolean isBipartite(int[][] graph) {
            int n = graph.length;
            colors = new int[n];
            for(int i = 0; i < n; i++) {
                if(colors[i] == 0 && !dfs(graph, i, 1))
                    return false;
            }
            return true;
        }
        
        private boolean dfs(int[][] graph, int node, int color) {
            if(colors[node] != 0)
                return colors[node] == color ? true: false;
            else {
                colors[node] = color;
                for(int j : graph[node]) {
                    if(!dfs(graph, j, -color))
                        return false;
                }
            }
            return true;
        }
    }
  • 相关阅读:
    LintCode "Subarray Sum II"
    LintCode "Maximum Subarray Difference"
    LeetCode "Flip Game II"
    LintCode "Sliding Window Median" & "Data Stream Median"
    LintCode "Permutation Index"
    LintCode "Count of Smaller Number before itself"
    LeetCode "Nim Game"
    Etcd在Linux CentOS7下载、安装
    CentOS7 查看开启端口
    CentOS7-防火墙firewall 状态、重启、关闭
  • 原文地址:https://www.cnblogs.com/fatttcat/p/10064006.html
Copyright © 2011-2022 走看看