zoukankan      html  css  js  c++  java
  • 240. Search a 2D Matrix II

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

    • Integers in each row are sorted in ascending from left to right.
    • Integers in each column are sorted in ascending from top to bottom.

    Example:

    Consider the following matrix:

    [
      [1,   4,  7, 11, 15],
      [2,   5,  8, 12, 19],
      [3,   6,  9, 16, 22],
      [10, 13, 14, 17, 24],
      [18, 21, 23, 26, 30]
    ]
    

    Given target = 5, return true.

    Given target = 20, return false.

    M1: search from the bottom left corner

    观察到,左下角的数字,向上递减,向右递增,可以从左下角开始查找,循环成立条件是数组下标不越界。如果 当前数 < target,向右查找;如果 当前数 < target,向上查找。

    time: O(m + n), space: O(1)

    class Solution {
        public boolean searchMatrix(int[][] matrix, int target) {
            if(matrix == null || matrix.length == 0) {
                return false;
            }
            int row = matrix.length - 1, col = 0;
            while(row >= 0 && col <= matrix[0].length - 1) {
                if(matrix[row][col] == target) {
                    return true;
                } else if(matrix[row][col] > target) {
                    row--;
                } else {
                    col++;
                }
            }
            return false;
        }
    }

    M2: 利用 recursion + binary search

    The basic idea is to use recursion and a helper function (search). In each recursive call, check the middle element if it's equal to target. If it's equal, return true as result, otherwise keep searching on the remaining sub-matrix where the target could still possibly in by recursively calling the search function. Here if middle element is not equal to target, we can exclude an area that the target cannot be in, and the remaining submatrix is like an L shaped area, which can be split into two matrices and search respectively (if any matrix exists the target, return true).

    time =  O(logm + logn), space = O(logmn)

    class Solution {
        int[][] matrix;
        int target;
        
        public boolean searchMatrix(int[][] matrix, int target) {
            this.matrix = matrix;
            this.target = target;
            if(matrix == null || matrix.length == 0 || matrix[0].length == 0) {
                return false;
            }
            return search(0, 0, matrix.length - 1, matrix[0].length - 1);
        }
        
        public boolean search(int x1, int y1, int x2, int y2) {
            if(x1 > x2 || y1 > y2 || x1 > matrix.length - 1 || x2 < 0 || y1 > matrix[0].length - 1 || y2 < 0) {
                return false;
            }
            int midx = x1 + (x2 - x1) / 2;
            int midy = y1 + (y2 - y1) / 2;
            if(matrix[midx][midy] == target) {
                return true;
            } else if(matrix[midx][midy] < target) {
                return search(x1, midy + 1, x2, y2) || search(midx + 1, y1, x2, midy);
            } else if(matrix[midx][midy] > target) {
                return search(x1, y1, x2, midy - 1) || search(x1, midy, midx - 1, y2);
            } else {
                return false;
            }
        }
    }
  • 相关阅读:
    IntelliJ Idea 常用快捷键 列表(实战终极总结!!!!)
    spring+spring mvc+mybatis 实现主从数据库配置
    Elasticsearch java api 基本搜索部分详解
    Elasticsearch java api 常用查询方法QueryBuilder构造举例
    Elasticsearch JavaApi
    [搜索]ElasticSearch Java Api(一) -添加数据创建索引
    Java Elasticsearch新手入门教程
    转载 Elasticsearch开发环境搭建(EclipseMyEclipse + Maven)
    SpringQuartz 实现定时任务调度
    Mysql语句查询优化
  • 原文地址:https://www.cnblogs.com/fatttcat/p/10068895.html
Copyright © 2011-2022 走看看