zoukankan      html  css  js  c++  java
  • 240. Search a 2D Matrix II

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

    • Integers in each row are sorted in ascending from left to right.
    • Integers in each column are sorted in ascending from top to bottom.

    Example:

    Consider the following matrix:

    [
      [1,   4,  7, 11, 15],
      [2,   5,  8, 12, 19],
      [3,   6,  9, 16, 22],
      [10, 13, 14, 17, 24],
      [18, 21, 23, 26, 30]
    ]
    

    Given target = 5, return true.

    Given target = 20, return false.

    M1: search from the bottom left corner

    观察到,左下角的数字,向上递减,向右递增,可以从左下角开始查找,循环成立条件是数组下标不越界。如果 当前数 < target,向右查找;如果 当前数 < target,向上查找。

    time: O(m + n), space: O(1)

    class Solution {
        public boolean searchMatrix(int[][] matrix, int target) {
            if(matrix == null || matrix.length == 0) {
                return false;
            }
            int row = matrix.length - 1, col = 0;
            while(row >= 0 && col <= matrix[0].length - 1) {
                if(matrix[row][col] == target) {
                    return true;
                } else if(matrix[row][col] > target) {
                    row--;
                } else {
                    col++;
                }
            }
            return false;
        }
    }

    M2: 利用 recursion + binary search

    The basic idea is to use recursion and a helper function (search). In each recursive call, check the middle element if it's equal to target. If it's equal, return true as result, otherwise keep searching on the remaining sub-matrix where the target could still possibly in by recursively calling the search function. Here if middle element is not equal to target, we can exclude an area that the target cannot be in, and the remaining submatrix is like an L shaped area, which can be split into two matrices and search respectively (if any matrix exists the target, return true).

    time =  O(logm + logn), space = O(logmn)

    class Solution {
        int[][] matrix;
        int target;
        
        public boolean searchMatrix(int[][] matrix, int target) {
            this.matrix = matrix;
            this.target = target;
            if(matrix == null || matrix.length == 0 || matrix[0].length == 0) {
                return false;
            }
            return search(0, 0, matrix.length - 1, matrix[0].length - 1);
        }
        
        public boolean search(int x1, int y1, int x2, int y2) {
            if(x1 > x2 || y1 > y2 || x1 > matrix.length - 1 || x2 < 0 || y1 > matrix[0].length - 1 || y2 < 0) {
                return false;
            }
            int midx = x1 + (x2 - x1) / 2;
            int midy = y1 + (y2 - y1) / 2;
            if(matrix[midx][midy] == target) {
                return true;
            } else if(matrix[midx][midy] < target) {
                return search(x1, midy + 1, x2, y2) || search(midx + 1, y1, x2, midy);
            } else if(matrix[midx][midy] > target) {
                return search(x1, y1, x2, midy - 1) || search(x1, midy, midx - 1, y2);
            } else {
                return false;
            }
        }
    }
  • 相关阅读:
    第三篇:数据仓库系统的实现与使用(含OLAP重点讲解)
    Django框架ORM单表删除表记录_模型层
    Django创建模型_模型层
    Django框架ORM单表添加表记录_模型层
    Django框架打印orm转换过程中的sql_模型层
    Django框架创建数据库表时setting文件配置_模型层
    UCRT: VC 2015 Universal CRT, by Microsoft
    vs2015部署---下一代VC运行时库系统:the Universal CRT
    VS2015开发的C++应用如何不依赖Visual C++ 2015 redistributable?
    C++11并发之std::thread
  • 原文地址:https://www.cnblogs.com/fatttcat/p/10068895.html
Copyright © 2011-2022 走看看