Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary search tree.
You may assume each number in the sequence is unique.
Consider the following binary search tree:
5 / 2 6 / 1 3
Example 1:
Input: [5,2,6,1,3] Output: false
Example 2:
Input: [5,2,1,3,6] Output: true
Follow up:
Could you do it using only constant space complexity?
M1: 用stack
变量root初始时设为Integer.MIN_VALUE
对于preorder中的每个元素pre[i]: 如果小于root,直接返回false -> 当stack非空,并且pre当前元素大于栈顶元素时,弹出栈顶元素,并把最后一个弹出的元素赋值给root -> pre当前元素入栈
time: O(n), space: O(n)
class Solution { public boolean verifyPreorder(int[] preorder) { if(preorder == null || preorder.length == 0) { return true; } LinkedList<Integer> s = new LinkedList<>(); int root = Integer.MIN_VALUE; for(int i = 0; i < preorder.length; i++) { if(preorder[i] < root) { return false; } while(!s.isEmpty() && preorder[i] > s.peekFirst()) { root = s.pollFirst(); } s.offerFirst(preorder[i]); } return true; } }
M2: constant space complexity