zoukankan      html  css  js  c++  java
  • 1151. Minimum Swaps to Group All 1's Together

    Given a binary array data, return the minimum number of swaps required to group all 1’s present in the array together in any placein the array.

    Example 1:

    Input: [1,0,1,0,1]
    Output: 1
    Explanation: 
    There are 3 ways to group all 1's together:
    [1,1,1,0,0] using 1 swap.
    [0,1,1,1,0] using 2 swaps.
    [0,0,1,1,1] using 1 swap.
    The minimum is 1.
    

    Example 2:

    Input: [0,0,0,1,0]
    Output: 0
    Explanation: 
    Since there is only one 1 in the array, no swaps needed.
    

    Example 3:

    Input: [1,0,1,0,1,0,0,1,1,0,1]
    Output: 3
    Explanation: 
    One possible solution that uses 3 swaps is [0,0,0,0,0,1,1,1,1,1,1].
    

    Note:

    1. 1 <= data.length <= 10^5
    2. 0 <= data[i] <= 1

    intuition: the # of 1s that should be grouped together is the # of 1's the whole array has. every subarray of size ones, need several number of swaps to reach, which is the number of zeros in that subarray. 

    use sliding window, check all the window with the same length n (# of 1s), find the maximum one which already contains the most 1s. then swap the rest: n-max.

    time = O(n), space = O(1)

    class Solution {
        public int minSwaps(int[] data) {
            int numOfOnes = 0;
            for(int num : data) {
                if(num == 1) {
                    numOfOnes++;
                }
            }
            
            int slow = 0, fast = 0, counter = 0, max = 0;   // max # of 1s in current window
            while(fast < data.length) {
                while(fast < data.length && fast - slow < numOfOnes) {  // window size of numOfOnes
                    if(data[fast++] == 1) {
                        counter++;
                    }
                }
                max = Math.max(max, counter);
                if(fast == data.length) {
                    break;
                }
                
                if(data[slow++] == 1) {
                    counter--;
                }
            }
            return numOfOnes - max;
        }
    }
  • 相关阅读:
    uva-679 Dropping Balls UVA
    并查集模板
    最大子段和模板
    uva 10048 Audiophobia UVA
    2018/11/2 周五集训队第三次比赛补题题解
    单源最短路径算法小总结
    DP背包问题小总结
    SpringMVC的请求-获得请求参数-获得请求头信息
    SpringMVC的请求-获得请求参数-自定义类型转换器
    SpringMVC的请求-获得请求参数-Restful风格的参数的获取
  • 原文地址:https://www.cnblogs.com/fatttcat/p/11397766.html
Copyright © 2011-2022 走看看