zoukankan      html  css  js  c++  java
  • 1151. Minimum Swaps to Group All 1's Together

    Given a binary array data, return the minimum number of swaps required to group all 1’s present in the array together in any placein the array.

    Example 1:

    Input: [1,0,1,0,1]
    Output: 1
    Explanation: 
    There are 3 ways to group all 1's together:
    [1,1,1,0,0] using 1 swap.
    [0,1,1,1,0] using 2 swaps.
    [0,0,1,1,1] using 1 swap.
    The minimum is 1.
    

    Example 2:

    Input: [0,0,0,1,0]
    Output: 0
    Explanation: 
    Since there is only one 1 in the array, no swaps needed.
    

    Example 3:

    Input: [1,0,1,0,1,0,0,1,1,0,1]
    Output: 3
    Explanation: 
    One possible solution that uses 3 swaps is [0,0,0,0,0,1,1,1,1,1,1].
    

    Note:

    1. 1 <= data.length <= 10^5
    2. 0 <= data[i] <= 1

    intuition: the # of 1s that should be grouped together is the # of 1's the whole array has. every subarray of size ones, need several number of swaps to reach, which is the number of zeros in that subarray. 

    use sliding window, check all the window with the same length n (# of 1s), find the maximum one which already contains the most 1s. then swap the rest: n-max.

    time = O(n), space = O(1)

    class Solution {
        public int minSwaps(int[] data) {
            int numOfOnes = 0;
            for(int num : data) {
                if(num == 1) {
                    numOfOnes++;
                }
            }
            
            int slow = 0, fast = 0, counter = 0, max = 0;   // max # of 1s in current window
            while(fast < data.length) {
                while(fast < data.length && fast - slow < numOfOnes) {  // window size of numOfOnes
                    if(data[fast++] == 1) {
                        counter++;
                    }
                }
                max = Math.max(max, counter);
                if(fast == data.length) {
                    break;
                }
                
                if(data[slow++] == 1) {
                    counter--;
                }
            }
            return numOfOnes - max;
        }
    }
  • 相关阅读:
    easyui
    applicationContext.xml xxx-servlet.xml
    response ,request编码
    json 处理
    webservice wsdl 生成服务
    springmvc 定时器
    ftp命令和scp命令
    Telnet、FTP、SSH、SFTP、SCP
    mysql 索引
    民科吧 见闻录
  • 原文地址:https://www.cnblogs.com/fatttcat/p/11397766.html
Copyright © 2011-2022 走看看