zoukankan      html  css  js  c++  java
  • 198. House Robber

    You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

    Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

    Example 1:

    Input: nums = [1,2,3,1]
    Output: 4
    Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
                 Total amount you can rob = 1 + 3 = 4.
    

    Example 2:

    Input: nums = [2,7,9,3,1]
    Output: 12
    Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
                 Total amount you can rob = 2 + 9 + 1 = 12.
    

    Constraints:

    • 0 <= nums.length <= 100
    • 0 <= nums[i] <= 400

    DP
    base case: f(0) = array[0], f(1) = max(array[0], array[1])
    induction rule: f(i) = max(f(i-2) + array[i], f(i-1))
    (1) f(i) = f(i-2) + array[i] -> rob array[i]
    (2) f(i) = f(i-1) -> don't rob array[i]
    time = O(n), space = O(1)

    M1: naive, time = O(n), space = O(n)

    class Solution {
        public int rob(int[] nums) {
            if(nums == null || nums.length == 0) {
                return 0;
            }
            if(nums.length == 1) {
                return nums[0];
            }
            int[] dp = new int[nums.length];
            dp[0] = nums[0];
            dp[1] = Math.max(nums[0], nums[1]);
            for(int i = 2; i < nums.length; i++) {
                dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
            }
            return dp[nums.length - 1];
        }
    }

    M2: space optimization, time = O(n), space = O(1)

    class Solution {
        public int rob(int[] nums) {
            if(nums == null || nums.length == 0) {
                return 0;
            }
            if(nums.length == 1) {
                return nums[0];
            }
            int[] dp = new int[3];
            dp[0] = nums[0];
            dp[1] = Math.max(nums[0], nums[1]);
            for(int i = 2; i < nums.length; i++) {
                dp[i % 3] = Math.max(dp[(i - 2) % 3] + nums[i], dp[(i - 1) % 3]);
            }
            return dp[(nums.length - 1) % 3];
        }
    }

    二刷:

    class Solution {
        public int rob(int[] nums) {
            if(nums == null || nums.length == 0) {
                return 0;
            }
            if(nums.length == 1) {
                return nums[0];
            }
            if(nums.length == 2) {
                return Math.max(nums[0], nums[1]);
            }
            
            int m0 = nums[0], m1 = Math.max(nums[0], nums[1]);
            int m2 = Math.max(m0 + nums[2], m1);
            for(int i = 2; i < nums.length; i++) {
                m2 = Math.max(m0 + nums[i], m1);
                m0 = m1;
                m1 = m2;
            }
            return m2;
        }
    }
  • 相关阅读:
    Spiral Matrix
    Merge Intervals
    Edit Distance
    Insertion Sort List
    Add Binary
    Partition List
    Binary Tree Postorder Traversal
    单向链表反转
    Facebook Hacker cup Qualification round Problem 1
    判断二叉树是否为平衡二叉树
  • 原文地址:https://www.cnblogs.com/fatttcat/p/13666863.html
Copyright © 2011-2022 走看看