zoukankan      html  css  js  c++  java
  • 198. House Robber

    You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

    Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

    Example 1:

    Input: nums = [1,2,3,1]
    Output: 4
    Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
                 Total amount you can rob = 1 + 3 = 4.
    

    Example 2:

    Input: nums = [2,7,9,3,1]
    Output: 12
    Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
                 Total amount you can rob = 2 + 9 + 1 = 12.
    

    Constraints:

    • 0 <= nums.length <= 100
    • 0 <= nums[i] <= 400

    DP
    base case: f(0) = array[0], f(1) = max(array[0], array[1])
    induction rule: f(i) = max(f(i-2) + array[i], f(i-1))
    (1) f(i) = f(i-2) + array[i] -> rob array[i]
    (2) f(i) = f(i-1) -> don't rob array[i]
    time = O(n), space = O(1)

    M1: naive, time = O(n), space = O(n)

    class Solution {
        public int rob(int[] nums) {
            if(nums == null || nums.length == 0) {
                return 0;
            }
            if(nums.length == 1) {
                return nums[0];
            }
            int[] dp = new int[nums.length];
            dp[0] = nums[0];
            dp[1] = Math.max(nums[0], nums[1]);
            for(int i = 2; i < nums.length; i++) {
                dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
            }
            return dp[nums.length - 1];
        }
    }

    M2: space optimization, time = O(n), space = O(1)

    class Solution {
        public int rob(int[] nums) {
            if(nums == null || nums.length == 0) {
                return 0;
            }
            if(nums.length == 1) {
                return nums[0];
            }
            int[] dp = new int[3];
            dp[0] = nums[0];
            dp[1] = Math.max(nums[0], nums[1]);
            for(int i = 2; i < nums.length; i++) {
                dp[i % 3] = Math.max(dp[(i - 2) % 3] + nums[i], dp[(i - 1) % 3]);
            }
            return dp[(nums.length - 1) % 3];
        }
    }

    二刷:

    class Solution {
        public int rob(int[] nums) {
            if(nums == null || nums.length == 0) {
                return 0;
            }
            if(nums.length == 1) {
                return nums[0];
            }
            if(nums.length == 2) {
                return Math.max(nums[0], nums[1]);
            }
            
            int m0 = nums[0], m1 = Math.max(nums[0], nums[1]);
            int m2 = Math.max(m0 + nums[2], m1);
            for(int i = 2; i < nums.length; i++) {
                m2 = Math.max(m0 + nums[i], m1);
                m0 = m1;
                m1 = m2;
            }
            return m2;
        }
    }
  • 相关阅读:
    hdu 5695 Gym Class (拓扑排序)
    bzoj 2002[Hnoi2010]Bounce 弹飞绵羊(分治分块)
    Codeforces Round #355 (Div. 2) D. Vanya and Treasure 分治暴力
    二分图匈牙利模板
    2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 GSM Base Station Identification (点在多边形内模板)
    hdu 1007 Quoit Design (经典分治 求最近点对)
    2017 ACM-ICPC乌鲁木齐网络赛 B. Out-out-control cars(计算几何 直线相交)
    hdu 6146 Pokémon GO (计数)
    hdu 2732 Leapin' Lizards (最大流 拆点建图)
    hdu 1451 Area in Triangle(计算几何 三角形)
  • 原文地址:https://www.cnblogs.com/fatttcat/p/13666863.html
Copyright © 2011-2022 走看看