zoukankan      html  css  js  c++  java
  • 198. House Robber

    You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

    Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

    Example 1:

    Input: nums = [1,2,3,1]
    Output: 4
    Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
                 Total amount you can rob = 1 + 3 = 4.
    

    Example 2:

    Input: nums = [2,7,9,3,1]
    Output: 12
    Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
                 Total amount you can rob = 2 + 9 + 1 = 12.
    

    Constraints:

    • 0 <= nums.length <= 100
    • 0 <= nums[i] <= 400

    DP
    base case: f(0) = array[0], f(1) = max(array[0], array[1])
    induction rule: f(i) = max(f(i-2) + array[i], f(i-1))
    (1) f(i) = f(i-2) + array[i] -> rob array[i]
    (2) f(i) = f(i-1) -> don't rob array[i]
    time = O(n), space = O(1)

    M1: naive, time = O(n), space = O(n)

    class Solution {
        public int rob(int[] nums) {
            if(nums == null || nums.length == 0) {
                return 0;
            }
            if(nums.length == 1) {
                return nums[0];
            }
            int[] dp = new int[nums.length];
            dp[0] = nums[0];
            dp[1] = Math.max(nums[0], nums[1]);
            for(int i = 2; i < nums.length; i++) {
                dp[i] = Math.max(dp[i - 2] + nums[i], dp[i - 1]);
            }
            return dp[nums.length - 1];
        }
    }

    M2: space optimization, time = O(n), space = O(1)

    class Solution {
        public int rob(int[] nums) {
            if(nums == null || nums.length == 0) {
                return 0;
            }
            if(nums.length == 1) {
                return nums[0];
            }
            int[] dp = new int[3];
            dp[0] = nums[0];
            dp[1] = Math.max(nums[0], nums[1]);
            for(int i = 2; i < nums.length; i++) {
                dp[i % 3] = Math.max(dp[(i - 2) % 3] + nums[i], dp[(i - 1) % 3]);
            }
            return dp[(nums.length - 1) % 3];
        }
    }

    二刷:

    class Solution {
        public int rob(int[] nums) {
            if(nums == null || nums.length == 0) {
                return 0;
            }
            if(nums.length == 1) {
                return nums[0];
            }
            if(nums.length == 2) {
                return Math.max(nums[0], nums[1]);
            }
            
            int m0 = nums[0], m1 = Math.max(nums[0], nums[1]);
            int m2 = Math.max(m0 + nums[2], m1);
            for(int i = 2; i < nums.length; i++) {
                m2 = Math.max(m0 + nums[i], m1);
                m0 = m1;
                m1 = m2;
            }
            return m2;
        }
    }
  • 相关阅读:
    Three.js源码阅读笔记4
    算法导论11.动态规划上
    leetcode刷题笔录1
    JavaScript的模块化:封装(闭包),继承(原型)
    leetcode刷题笔录5
    算法导论1.排序算法
    算法导论3.递归部分习题选
    Three.js Demo源码分析1.MorphTargets与BufferGeometry
    算法导论10.顺序统计树与区间树习题
    算法导论4.随机快速排序与线性时间排序
  • 原文地址:https://www.cnblogs.com/fatttcat/p/13666863.html
Copyright © 2011-2022 走看看