zoukankan      html  css  js  c++  java
  • 1007. Minimum Domino Rotations For Equal Row

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the ith domino.  (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

    We may rotate the ith domino, so that A[i] and B[i] swap values.

    Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.

    If it cannot be done, return -1.

    Example 1:

    Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
    Output: 2
    Explanation: 
    The first figure represents the dominoes as given by A and B: before we do any rotations.
    If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.
    

    Example 2:

    Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
    Output: -1
    Explanation: 
    In this case, it is not possible to rotate the dominoes to make one row of values equal.
    

    Constraints:

    • 2 <= A.length == B.length <= 2 * 104
    • 1 <= A[i], B[i] <= 6

    time = O(n), space = O(1)

    class Solution {
        public int minDominoRotations(int[] A, int[] B) {
            int n = A.length;
            int rotations = check(A[0], A, B, n);
            if(rotations != -1 || A[0] == B[0]) {
                return rotations;
            }
            return check(B[0], A, B, n);
        }
        
        public int check(int x, int[] A, int[] B, int n) {
            int rotateA = 0, rotateB = 0;
            for(int i = 0; i < n; i++) {
                if(A[i] != x && B[i] != x) {    // rotation cannot be done
                    return -1;
                } else if(A[i] != x) {
                    rotateA++;
                } else if(B[i] != x) {
                    rotateB++;
                }
            }
            return Math.min(rotateA, rotateB);
        }
    }
  • 相关阅读:
    C++ Builder string相互转换(转)
    Delphi中ComPort通信中的数据处理(转)
    GPRS管理与创建APN拨号连接(转)
    Delphi MaskEdit用法(转)
    GPRS DTU概念及DTU的工作原理(转)
    TIdTCPClient 详解
    GPRS的工作原理、主要特点
    Android studio快捷键
    HDU 1255 覆盖的面积(线段树+扫描线)
    Rescue
  • 原文地址:https://www.cnblogs.com/fatttcat/p/13896235.html
Copyright © 2011-2022 走看看