zoukankan      html  css  js  c++  java
  • 1007. Minimum Domino Rotations For Equal Row

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the ith domino.  (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

    We may rotate the ith domino, so that A[i] and B[i] swap values.

    Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.

    If it cannot be done, return -1.

    Example 1:

    Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
    Output: 2
    Explanation: 
    The first figure represents the dominoes as given by A and B: before we do any rotations.
    If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.
    

    Example 2:

    Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
    Output: -1
    Explanation: 
    In this case, it is not possible to rotate the dominoes to make one row of values equal.
    

    Constraints:

    • 2 <= A.length == B.length <= 2 * 104
    • 1 <= A[i], B[i] <= 6

    time = O(n), space = O(1)

    class Solution {
        public int minDominoRotations(int[] A, int[] B) {
            int n = A.length;
            int rotations = check(A[0], A, B, n);
            if(rotations != -1 || A[0] == B[0]) {
                return rotations;
            }
            return check(B[0], A, B, n);
        }
        
        public int check(int x, int[] A, int[] B, int n) {
            int rotateA = 0, rotateB = 0;
            for(int i = 0; i < n; i++) {
                if(A[i] != x && B[i] != x) {    // rotation cannot be done
                    return -1;
                } else if(A[i] != x) {
                    rotateA++;
                } else if(B[i] != x) {
                    rotateB++;
                }
            }
            return Math.min(rotateA, rotateB);
        }
    }
  • 相关阅读:
    TCP与UDP在socket编程中的区别
    使用python selenium webdriver模拟浏览器
    Web性能测试参数
    DPDK学习之开篇介绍
    go环境import cycle not allowed问题处理
    使用etcd+confd管理nginx配置
    服务的扩展性
    linux 网络编程
    单片机成长之路(stm8基础篇)- 025 stm8 时钟切换
    单片机成长之路(51基础篇)- 024 基于 N76E003 的按键按键状态机
  • 原文地址:https://www.cnblogs.com/fatttcat/p/13896235.html
Copyright © 2011-2022 走看看