You are given the root
of a binary search tree (BST), where exactly two nodes of the tree were swapped by mistake. Recover the tree without changing its structure.
Follow up: A solution using O(n)
space is pretty straight forward. Could you devise a constant space solution?
Example 1:
Input: root = [1,3,null,null,2] Output: [3,1,null,null,2] Explanation: 3 cannot be a left child of 1 because 3 > 1. Swapping 1 and 3 makes the BST valid.
Example 2:
Input: root = [3,1,4,null,null,2] Output: [2,1,4,null,null,3] Explanation: 2 cannot be in the right subtree of 3 because 2 < 3. Swapping 2 and 3 makes the BST valid.
Constraints:
- The number of nodes in the tree is in the range
[2, 1000]
. -231 <= Node.val <= 231 - 1
inorder traversal, time = O(n), space = O(n)
class Solution { public void recoverTree(TreeNode root) { List<TreeNode> nodes = new ArrayList<>(); List<Integer> vals = new ArrayList<>(); inOrder(root, nodes, vals); Collections.sort(vals); for(int i = 0; i < nodes.size(); i++) { nodes.get(i).val = vals.get(i); } } private void inOrder(TreeNode root, List<TreeNode> nodes, List<Integer> vals) { if(root == null) { return; } inOrder(root.left, nodes, vals); nodes.add(root); vals.add(root.val); inOrder(root.right, nodes, vals); } }
class Solution { TreeNode first = null, second = null, prev = new TreeNode(Integer.MIN_VALUE); public void recoverTree(TreeNode root) { inOrder(root); int tmp = first.val; first.val = second.val; second.val = tmp; } private void inOrder(TreeNode root) { if(root == null) { return; } inOrder(root.left); if(first == null && prev.val >= root.val) { first = prev; } if(first != null && prev.val >= root.val) { second = root; } prev = root; inOrder(root.right); } }