zoukankan      html  css  js  c++  java
  • POJ-1861-NETWORK 解题报告

    Network
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 16628   Accepted: 6597   Special Judge

    Description

    Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
    Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
    You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

    Input

    The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

    Output

    Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

    Sample Input

    4 6
    1 2 1
    1 3 1
    1 4 2
    2 3 1
    3 4 1
    2 4 1
    

    Sample Output

    1
    4
    1 2
    1 3
    2 3
    3 4
    

    Source

    Northeastern Europe 2001, Northern Subregion

    好久没有更新这个博客,觉得自己还是不够努力,自己的acm学习之路的脚步走的很慢,希望尽快改变现状吧。这道题考察kruskal算法,留下个记录

    题解:题目大意是有n个顶点,m条边,使图连通,使边权和最小,不构成回路

    kruskal算法:按边权从小到到排序,顺序将边加入图中,若图中两点不连通则加入,否则就不考虑,(判断两点是否在图中中并查集,并查集的主要功能就是合并和查找的功能),最终就可以解答此题,找到最小的边权的连通图。

    初始化并查集f[]数组(f中每个数等于下标值)find(x),

    查找x的祖先,若x!=find(x)则find(find(x)),递归操作即可

    合并操作,union(x,y) 若两个是不同的祖先则合并。

    #include <stdio.h>
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    
    using namespace std;
    
    const int maxn = 1e6+7;
    
    int father[maxn];
    
    int n, m, c = 1;
    struct _edge{
        int x, y, d;
    }edge[maxn], ans[maxn];
    
    bool cmp(_edge a, _edge b)
    {
        return a.d < b.d;
    }
    
    int fi(int x)
    {
        return x == father[x] ? x : father[x] = fi(father[x]);
    }
    
    void union1(int x, int y)
    {
        int p1 = fi(x), p2 = fi(y);
        if (p1 == p2) return;
        father[p1] = p2;
    }
    
    int check(int x, int y)
    {
        int p = fi(x), q = fi(y);
        if (p == q)
            return 1;
        return 0;
    }
    
    void init()
    {
        for (int i=0; i<=n; i++)
            father[i] = i;
    }
    
    void kruskal()
    {
        for (int i=1; i<=m; i++)
        {
            int x = edge[i].x;
            int y = edge[i].y;
            if (fi(x) != fi(y)) {
                union1(x, y);
                ans[c].x = x;
                ans[c].y = y;
                ans[c].d = edge[i].d;
                c++;
            }
        }
    }
    
    int main()
    {
        int x, y;
        scanf("%d%d", &n, &m);
        init();
        for (int i=1; i<=m; i++)
        {
            scanf("%d%d%d", &edge[i].x, &edge[i].y, &edge[i].d);
        }
        sort(edge+1, edge+m+1, cmp);
        kruskal();
        printf("%d
    ", ans[c-1].d);
        printf("%d
    ", c-1);
        for (int i=1; i<c; i++) {
            printf("%d %d
    ", ans[i].x, ans[i].y);
        }
        return 0;
    }
    


  • 相关阅读:
    python3读取chrome浏览器cookies
    python通过Cookie跳过登录验证码
    Python 正则表达式模块 (re) 简介
    python抓取bing主页背景图片
    python的开发环境配置-Eclipse-PyDev插件安装
    Windows环境selenium+Python环境配置
    Java+Jmeter接口测试
    Jmeter接口测试参数化实例图文示例
    Jmeter接口测试实例图文示例
    单元测试-代码覆盖率 EclEmma
  • 原文地址:https://www.cnblogs.com/fayne/p/7224790.html
Copyright © 2011-2022 走看看