zoukankan      html  css  js  c++  java
  • 04-树5 Root of AVL Tree

    题目来自:http://t.cn/R4hw22D

    04-树5 Root of AVL Tree 

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

     

    Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print the root of the resulting AVL tree in one line.

    Sample Input 1:

    5
    88 70 61 96 120
    

    Sample Output 1:

    70
    

    Sample Input 2:

    7
    88 70 61 96 120 90 65
    

    Sample Output 2:

    88

    题目大意是先输入一个整数N,然后依次输入N个节点的值,以此建立AVL树,最后输出AVL树的根节点的值。

    代码如下:

     
      1 #include <cstdio>
      2 #include <cstdlib>
      3 
      4 typedef struct TreeNode *AvlTree;
      5 typedef struct TreeNode *Position;
      6 struct TreeNode
      7 {
      8     int Data;
      9     AvlTree Left;
     10     AvlTree Right;
     11     int Height;
     12 };
     13 
     14 AvlTree Insert(int x, AvlTree T);   //插入新节点,必要时调整
     15 Position SingleRotateWithLeft(Position a);    //左单旋
     16 Position SingleRotateWithRight(Position b);   //右单旋
     17 Position DoubleRotateWithLeft(Position a);    //左右旋
     18 Position DoubleRotateWithRight(Position b);   //右左旋
     19 
     20 int Max(int x1, int x2);      //返回两个int中较大的
     21 int Height(Position P);     //返回一个节点的高度
     22 
     23 int main()
     24 {
     25     int n, x;
     26     AvlTree T = NULL;
     27 
     28     scanf("%d", &n);
     29     for (int i = 0; i < n; i++)
     30     {
     31         scanf("%d", &x);
     32         T = Insert(x, T);
     33     }
     34     printf("%d
    ", T->Data);    //打印根节点的值
     35 
     36     return 0;
     37 }
     38 
     39 AvlTree Insert(int x, AvlTree T)
     40 {
     41     if (T == NULL)
     42     {
     43         T = (AvlTree)malloc(sizeof(struct TreeNode));
     44         T->Data = x;
     45         T->Left = T->Right = NULL;
     46         T->Height = 0;
     47     }
     48     else if (x < T->Data)   //向左子树插入
     49     {
     50         T->Left = Insert(x, T->Left);
     51         if (Height(T->Left) - Height(T->Right) == 2)    //需调整
     52         {
     53             if (x < T->Left->Data)
     54                 T = SingleRotateWithLeft(T);
     55             else
     56                 T = DoubleRotateWithLeft(T);
     57         }
     58     }
     59     else if (x > T->Data)   //向右子树插入
     60     {
     61         T->Right = Insert(x, T->Right);
     62         if (Height(T->Right) - Height(T->Left) == 2)    //需调整
     63         {
     64             if (x > T->Right->Data)
     65                 T = SingleRotateWithRight(T);
     66             else
     67                 T = DoubleRotateWithRight(T);
     68         }
     69     }
     70     /*else值为x的节点已经存在树中,无需插入*/
     71 
     72     /*更新节点高度*/
     73     T->Height = Max(Height(T->Left), Height(T->Right)) + 1;
     74     return T;
     75 }
     76 
     77 Position SingleRotateWithLeft(Position a)
     78 {
     79     Position b = a->Left;
     80     a->Left = b->Right;
     81     b->Right = a;
     82     //更新a, b节点高度
     83     a->Height = Max(Height(a->Left), Height(a->Right)) + 1;
     84     b->Height = Max(Height(b->Left), Height(b->Right)) + 1;
     85 
     86     return b;      /*新的根节点*/
     87 }
     88 
     89 Position SingleRotateWithRight(Position b)
     90 {
     91     Position a = b->Right;
     92     b->Right = a->Left;
     93     a->Left = b;
     94     //更新a,b节点高度
     95     a->Height = Max(Height(a->Left), Height(a->Right)) + 1;
     96     b->Height = Max(Height(b->Left), Height(b->Right)) + 1;
     97     return a;       /*新的根节点*/
     98 }
     99 
    100 Position DoubleRotateWithLeft(Position a)
    101 {
    102     a->Left = SingleRotateWithRight(a->Left);
    103     return SingleRotateWithLeft(a);
    104 }
    105 
    106 Position DoubleRotateWithRight(Position b)
    107 {
    108     b->Right = SingleRotateWithLeft(b->Right);
    109     return SingleRotateWithRight(b);
    110 }
    111 
    112 int Max(int x1, int x2)
    113 {
    114     return (x1 > x2) ? x1 : x2;
    115 }
    116 
    117 int Height(Position P)
    118 {
    119     if (P == NULL)  //空节点高度为-1
    120         return -1;
    121     return P->Height;
    122 }
    参考资料:
    04-树4. Root of AVL Tree-平衡查找树AVL树的实现 
  • 相关阅读:
    Android使用SQLite数据库(2)
    Android使用SQLite数据库(1)
    使用Eclipse为Android定义style
    SharedPreferences写入和读出数据
    AlertDialog.Builder弹出对话框
    Android退出时关闭所有Activity的方法
    获取PC或移动设备的所有IP地址
    Android文件的分割和组装
    到底什么是跨域?附解决方案!
    超详细 Nginx 极简教程
  • 原文地址:https://www.cnblogs.com/fazero/p/5029215.html
Copyright © 2011-2022 走看看