zoukankan      html  css  js  c++  java
  • Redis:Redis如何做高性能、高可用、可拓展?

    主从复制

    master-slave(replication)
    从节点上只能读数据,不能写入数据,只能在主节点写入数据。主节点的数据会自动同步到从节点。

    复制原理:

    • 从节点第一次加入后和主节点建立连接
    • 建立连接后主节点通过bgsave生成RDB文件,再将文件发送到从节点(假如超时则会重发)
    • 新来的指令主节点保存在缓冲区中,然后再发送给从节点
    • 从节点基于rdb做一次数据载入
    • 后续通过命令传播到从节点保持数据一致
    • 假如从节点断开一段时间重新加入,会丢失断开时间的数据,会基于偏移量增量复制。

    解决的问题:

    • 数据备份
    • 读写分离(不是很有必要,redis本身的性能已经够高了)

    存在的问题:
    主从会有延迟。
    主挂了,主从不会自动切换,需要手动重启主节点。

    高可用(Sentinel机制)

    sentinel是特殊的redis-server节点,一般会建造多个sentinel节点互相监控,sentinel之间地位平等,没有主从之分。
    sentinel会监控真正redis-server节点:

    • 当主节点超时未与sentinel节点连接时,会先将主节点标记下线(主观下线)
    • 该sentinel节点会询问其他的节点,假如超过半数(奇数个sentinel)认为主节点下线,此时为真正下线(客观下线)
    • 此时需要failover(故障转移):奇数个哨兵会通过Raft算法选举leader,leader的sentinel节点会发送两条指令让某一个从节点成为主节点
    • 旧的主节点重启后会变成新的主节点的从节点

    解决的问题:

    • 高可用

    存在的问题:

    • 切换过程中可能会出现短暂数据丢失
    • 没有解决水平扩容问题

    redis客户端会从sentinel拿到主节点的地址,再去根据地址进行真正地连接及操作。

    Raft算法(分布式一致性算法的一种)

    1、先到先得
    2、少数服从多数

    选举的超时时间是一个随机数,最先超时的会变成一个candidate,然后发起投票,并且给自己投一票,假如超过半数投票自己(平票则需要再投一次),自己成为了leader以后,会定期给从节点发送心跳包,重置从节点的选举超时时间。

    可拓展

    为了解决水平扩容的问题,我们可以在客户端做分片,也可以用代理分片服务,另外Redis本身提供Cluter模式,进行水平扩容

    客户端:jedis

    实现了分片到不同redis服务的功能,代码的拓展性有限,不能实现平滑扩容

    代理proxy

    Twenproxy,Codis:需要考虑proxy单点问题;不能实现平滑扩容

    服务端实现:Redis-Cluster(重点)

    架构:多主多从
    数据分布:CRC16算法对16384取模,按哈希槽分配(一共有16384个槽),将一些槽分配到对应的节点上。
    HashTag:在key中加{xxx},会用xxx取模分配槽,假如xxx一样则会分配在同一个节点上。

    主节点挂了:

    • slave发现master宕机,广播通知
    • 其他master发送ACK
    • slave变成新的master,广播通知

    客户端连接到任意一个节点都可以实现一样的效果,去中心化。

  • 相关阅读:
    转 mysql 数据结构详解
    转单元测试之道C#版
    转 告诉你如何用C#写出iOS与Android应用
    转 MySQL索引背后的数据结构及算法原理
    转单元测试基础知识
    转C#冒泡排序
    如何让web页面鼠标右键单击之后不出现菜单选项
    开博文
    jquery ui 1.7 ui.tabs 动态添加与关闭(按钮关闭+双击关闭)
    jquery ui tabs详解(中文)
  • 原文地址:https://www.cnblogs.com/fcb-it/p/13334311.html
Copyright © 2011-2022 走看看