zoukankan      html  css  js  c++  java
  • tensorFlow(二)线性回归

    需要TensorFlow基础,见TensorFlow(一)

    原理默认了解不赘述

    实例:

    模型创建:

    #!/usr/bin/python
    # -*- coding: utf-8 -*
    import tensorflow as tf
    import numpy as np
    
    class linearRegressionModel:
    
      def __init__(self,x_dimen):
        self.x_dimen = x_dimen
        self._index_in_epoch = 0
        self.constructModel()
        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer())
    
      #权重初始化
      def weight_variable(self,shape):
        initial = tf.truncated_normal(shape,stddev = 0.1)
        return tf.Variable(initial)
    
      #偏置项初始化
      def bias_variable(self,shape):
        initial = tf.constant(0.1,shape = shape)
        return tf.Variable(initial)
    
      #每次选取100个样本,如果选完,重新打乱
      def next_batch(self,batch_size):
        start = self._index_in_epoch
        self._index_in_epoch += batch_size
        if self._index_in_epoch > self._num_datas:
            perm = np.arange(self._num_datas)
            np.random.shuffle(perm)
            self._datas = self._datas[perm]
            self._labels = self._labels[perm]
            start = 0
            self._index_in_epoch = batch_size
            assert batch_size <= self._num_datas
        end = self._index_in_epoch
        return self._datas[start:end],self._labels[start:end]
    
      def constructModel(self):
        self.x = tf.placeholder(tf.float32, [None,self.x_dimen])
        self.y = tf.placeholder(tf.float32,[None,1])
        self.w = self.weight_variable([self.x_dimen,1])
        self.b = self.bias_variable([1])
        self.y_prec = tf.nn.bias_add(tf.matmul(self.x, self.w), self.b)
    
        mse = tf.reduce_mean(tf.squared_difference(self.y_prec, self.y))
        l2 = tf.reduce_mean(tf.square(self.w))
        self.loss = mse + 0.15*l2
        self.train_step = tf.train.AdamOptimizer(0.1).minimize(self.loss)
    
      def train(self,x_train,y_train,x_test,y_test):
        self._datas = x_train
        self._labels = y_train
        self._num_datas = x_train.shape[0]
        for i in range(5000):
            batch = self.next_batch(100)
            self.sess.run(self.train_step,feed_dict={self.x:batch[0],self.y:batch[1]})
            if i%10 == 0:
                train_loss = self.sess.run(self.loss,feed_dict={self.x:batch[0],self.y:batch[1]})
                print('step %d,test_loss %f' % (i,train_loss))
    
      def predict_batch(self,arr,batch_size):
        for i in range(0,len(arr),batch_size):
            yield arr[i:i + batch_size]
    
      def predict(self, x_predict):
        pred_list = []
        for x_test_batch in self.predict_batch(x_predict,100):
          pred = self.sess.run(self.y_prec, {self.x:x_test_batch})
          pred_list.append(pred)
        return np.vstack(pred_list)

    训练模型并和 sklearn 库线性回归模型对比

    #!/usr/bin/python
    # -*- coding: utf-8 -*
    
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import r2_score
    from sklearn.datasets import make_regression
    from sklearn.linear_model import LinearRegression
    from linear_regression_model import linearRegressionModel as lrm
    
    if __name__ == '__main__':
        x, y = make_regression(7000)
        x_train,x_test,y_train, y_test = train_test_split(x, y, test_size=0.5)
        y_lrm_train = y_train.reshape(-1, 1)
        y_lrm_test = y_test.reshape(-1, 1)
    
        linear = lrm(x.shape[1])
        linear.train(x_train, y_lrm_train,x_test,y_lrm_test)
        y_predict = linear.predict(x_test)
        print("Tensorflow R2: ", r2_score(y_predict.ravel(), y_lrm_test.ravel()))
    
        lr = LinearRegression()
        y_predict = lr.fit(x_train, y_train).predict(x_test)
        print("Sklearn R2: ", r2_score(y_predict, y_test)) #采用r2_score评分函数

    执行结果:

    step 2410,test_loss 26.531937
    step 2420,test_loss 26.542793
    step 2430,test_loss 26.533974
    step 2440,test_loss 26.530540
    step 2450,test_loss 26.551474
    step 2460,test_loss 26.541542
    step 2470,test_loss 26.560783
    step 2480,test_loss 26.538080
    step 2490,test_loss 26.535666
    ('Tensorflow R2: ', 0.99999612588302389)
    ('Sklearn R2: ', 1.0)
    View Code
  • 相关阅读:
    栈的理解(出、入栈)
    javascript实现可以拖动的层示例(层拖动,兼容IE/FF)
    C# 队列 堆栈
    从0开始做Windows Phone 7开发
    C#写系统日志
    一位软件工程师的6年总结
    向Android模拟器发短信打电话
    office2010激活方法
    常用正则表达式
    JaveScript获得鼠标位置
  • 原文地址:https://www.cnblogs.com/fclbky/p/9626186.html
Copyright © 2011-2022 走看看