Given a string containing just the characters '('
and ')'
, find the length of the longest valid (well-formed) parentheses substring.
For "(()"
, the longest valid parentheses substring is "()"
, which has length = 2.
Another example is ")()())"
, where the longest valid parentheses substring is "()()"
, which has length = 4.
题意:求最长的合法括号长度
思路1,用栈:1.遍历字符串,当遇到'('的时候,把其索引放入堆栈,当遇到')'时候,如果栈顶是'(',则出栈操作一次,否则索引入栈
2.当栈为空时候,说明字符串全体合法,返回字符串长度
3.如果栈不为空,则比较栈中相邻索引的“空洞”长度,最长的空洞即为所求
1 class Solution { 2 public: 3 int longestValidParentheses(string s) { 4 int n=s.length(),i,longest=0; 5 stack<int> st; 6 for(i=0;i<n;i++){ 7 if('('==s[i]) 8 st.push(i); 9 else{ 10 if(!st.empty()){ 11 if(s[st.top()]=='(') 12 st.pop(); 13 else 14 st.push(i); 15 } 16 else{ 17 st.push(i); 18 } 19 } 20 } 21 if(st.empty()) longest = n; 22 else{ 23 int rear=n,front=0; 24 while(!st.empty()){ 25 front=st.top(); 26 st.pop(); 27 longest = max(longest,rear-1-front); 28 rear = front; 29 } 30 longest = max(longest,front); 31 } 32 return longest; 33 } 34 };
思路2:动态规划
用longest[]记录字符串中截至每个位置时的最长合法字符串长度
如果s[i]为'(',那么longest[i]为0,因为左右以'('结尾的字符串肯定不合法,为0
如果s[i]为')',那么分两种情况
1.当s[i-1]为'('时候, longest[i] = longest[i-2] + 2
2.当s[i-1]为')',和s[i-longest[i-1]-1] == '('时,longest[i] = longest[i-1] + 2 + longest[i-longest[i-1]-2];
longest[i-longest[i-1]-2]代表上一个以')'结尾的合法字符串
1 class Solution { 2 public: 3 int longestValidParentheses(string s) { 4 int len=s.length(); 5 if(len<=1) 6 return 0; 7 int curmax=0; 8 vector<int> longest(len,0); 9 for(int i=1;i<len;i++){ 10 if(')'==s[i]){ 11 if('('==s[i-1]){ 12 longest[i]=(i-1>0?longest[i-2]+2:2); 13 curmax=max(longest[i],curmax); 14 } 15 else{ 16 if(i-longest[i-1]-1>=0&&s[i-longest[i-1]-1]=='('){ 17 longest[i]=longest[i-1]+2+(i-longest[i-1]-1>0?longest[i-longest[i-1]-2]:0); 18 curmax=max(longest[i],curmax); 19 } 20 } 21 } 22 } 23 return curmax; 24 } 25 };