zoukankan      html  css  js  c++  java
  • Python基础之C语言源码分析垃圾回收机制

    两个重要的结构体

    #define PyObject_HEAD       PyObject ob_base;
    #define PyObject_VAR_HEAD      PyVarObject ob_base;
    // 宏定义,包含 上一个、下一个,用于构造双向链表用。(放到refchain链表中时,要用到)
    #define _PyObject_HEAD_EXTRA            
        struct _object *_ob_next;           
        struct _object *_ob_prev;
    typedef struct _object {
        _PyObject_HEAD_EXTRA // 用于构造双向链表
        Py_ssize_t ob_refcnt;  // 引用计数器
        struct _typeobject *ob_type;    // 数据类型
    } PyObject;
    typedef struct {
        PyObject ob_base;   // PyObject对象
        Py_ssize_t ob_size; /* Number of items in variable part,即:元素个数 */
    } PyVarObject;

    这两个结构体PyObjectPyVarObject是基石,他们保存这其他数据类型公共部分,例如:每个类型的对象在创建时都有PyObject中的那4部分数据;list/set/tuple等由多个元素组成对象创建时都有PyVarObject中的那5部分数据。

    常见类型结构体

    平时我们在创建一个对象时,本质上就是实例化一个相关类型的结构体,在内部保存值和引用计数器等。

    • float类型
     typedef struct {
          PyObject_HEAD
          double ob_fval;
      } PyFloatObject;
    • int类型
    struct _longobject {
          PyObject_VAR_HEAD
          digit ob_digit[1];
      };
      /* Long (arbitrary precision) integer object interface */
      typedef struct _longobject PyLongObject; /* Revealed in longintrepr.h */
    • str类型
    typedef struct {
          PyObject_HEAD
          Py_ssize_t length;          /* Number of code points in the string */
          Py_hash_t hash;             /* Hash value; -1 if not set */
          struct {
              unsigned int interned:2;
              /* Character size:
             - PyUnicode_WCHAR_KIND (0):
               * character type = wchar_t (16 or 32 bits, depending on the
                 platform)
             - PyUnicode_1BYTE_KIND (1):
               * character type = Py_UCS1 (8 bits, unsigned)
               * all characters are in the range U+0000-U+00FF (latin1)
               * if ascii is set, all characters are in the range U+0000-U+007F
                 (ASCII), otherwise at least one character is in the range
                 U+0080-U+00FF
             - PyUnicode_2BYTE_KIND (2):
               * character type = Py_UCS2 (16 bits, unsigned)
               * all characters are in the range U+0000-U+FFFF (BMP)
               * at least one character is in the range U+0100-U+FFFF
             - PyUnicode_4BYTE_KIND (4):
               * character type = Py_UCS4 (32 bits, unsigned)
               * all characters are in the range U+0000-U+10FFFF
               * at least one character is in the range U+10000-U+10FFFF
             */
              unsigned int kind:3;
              unsigned int compact:1;
              unsigned int ascii:1;
              unsigned int ready:1;
              unsigned int :24;
          } state;
          wchar_t *wstr;              /* wchar_t representation (null-terminated) */
      } PyASCIIObject;
      typedef struct {
          PyASCIIObject _base;
          Py_ssize_t utf8_length;     /* Number of bytes in utf8, excluding the
                                       * terminating . */
          char *utf8;                 /* UTF-8 representation (null-terminated) */
          Py_ssize_t wstr_length;     /* Number of code points in wstr, possible
                                       * surrogates count as two code points. */
      } PyCompactUnicodeObject;
      typedef struct {
          PyCompactUnicodeObject _base;
          union {
              void *any;
              Py_UCS1 *latin1;
              Py_UCS2 *ucs2;
              Py_UCS4 *ucs4;
          } data;                     /* Canonical, smallest-form Unicode buffer */
      } PyUnicodeObject;
    • list类型
     typedef struct {
          PyObject_VAR_HEAD
          PyObject **ob_item;
          Py_ssize_t allocated;
      } PyListObject;
    • tuple类型  
    typedef struct {
          PyObject_VAR_HEAD
          PyObject *ob_item[1];
      } PyTupleObject;
    • dict类型
    typedef struct {
          PyObject_HEAD
          Py_ssize_t ma_used;
          PyDictKeysObject *ma_keys;
          PyObject **ma_values;
      } PyDictObject;

    通过常见结构体可以基本了解到本质上每个对象内部会存储的数据。

    扩展:在结构体部分你应该发现了str类型比较繁琐,那是因为python字符串在处理时需要考虑到编码的问题,在内部规定(见源码结构体):

    • 字符串只包含ascii,则每个字符用1个字节表示,即:latin1

    • 字符串包含中文等,则每个字符用2个字节表示,即:ucs2

    • 字符串包含emoji等,则每个字符用4个字节表示,即:ucs4

    Float类型

    创建

    val = 3.14

    类似于这样创建一个float对象时,会执行C源码中的如下代码:

    // Objects/floatobject.c
    // 用于缓存float对象的链表
    static PyFloatObject *free_list = NULL;
    static int numfree = 0;
    PyObject *
    PyFloat_FromDouble(double fval)
    {
        // 如果free_list中有可用对象,则从free_list链表拿出来一个;否则为对象重新开辟内存。
        PyFloatObject *op = free_list;
        if (op != NULL) {
            free_list = (PyFloatObject *) Py_TYPE(op);
            numfree--;
        } else {
            // 根据float类型的大小,为float对象新开辟内存。
            op = (PyFloatObject*) PyObject_MALLOC(sizeof(PyFloatObject));
            if (!op)
                return PyErr_NoMemory();
        }
        // 对float对象进行初始化,例如:引用计数器初始化为1、添加到refchain链表等。
        /* Inline PyObject_New */
        (void)PyObject_INIT(op, &PyFloat_Type);
        // 对float对象赋值。即:op->ob_fval = 3.14
        op->ob_fval = fval;
        return (PyObject *) op;
    }
    
    // Include/objimpl.h
    #define PyObject_INIT(op, typeobj) 
        ( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
    
    // Objects/object.c
    // 维护了所有对象的一个环状双向链表
    static PyObject refchain = {&refchain, &refchain};
    void
    _Py_AddToAllObjects(PyObject *op, int force)
    {
        if (force || op->_ob_prev == NULL) {
            op->_ob_next = refchain._ob_next;
            op->_ob_prev = &refchain;
            refchain._ob_next->_ob_prev = op;
            refchain._ob_next = op;
        }
    }
    void
    _Py_NewReference(PyObject *op)
    {
        _Py_INC_REFTOTAL;
        // 引用计数器初始化为1。
        op->ob_refcnt = 1;
        // 对象添加到双向链表refchain中。
        _Py_AddToAllObjects(op, 1);
        _Py_INC_TPALLOCS(op);
    }

    引用

    val = 3.14
    data = val
    

    在项目中如果出现这种引用关系时,会将原对象的引用计数器+1。
    C源码执行流程如下:

    // Include/object.h
    static inline void _Py_INCREF(PyObject *op)
    {
        _Py_INC_REFTOTAL;
        // 对象的引用计数器 + 1
        op->ob_refcnt++;
    }
    #define Py_INCREF(op) _Py_INCREF(_PyObject_CAST(op))

    销毁

    val = 3.14
    del val

    在项目中如果出现这种删除的语句,则内部会将引用计数器-1,如果引用计数器减为0,则进行缓存或垃圾回收。
    C源码执行流程如下:

    // Include/object.h
    static inline void _Py_DECREF(const char *filename, int lineno,
                                  PyObject *op)
    {
        (void)filename; /* may be unused, shut up -Wunused-parameter */
        (void)lineno; /* may be unused, shut up -Wunused-parameter */
        _Py_DEC_REFTOTAL;
        // 引用计数器-1,如果引用计数器为0,则执行 _Py_Dealloc去缓存或垃圾回收。
        if (--op->ob_refcnt != 0) {
    #ifdef Py_REF_DEBUG
            if (op->ob_refcnt < 0) {
                _Py_NegativeRefcount(filename, lineno, op);
            }
    #endif
        }
        else {
            _Py_Dealloc(op);
        }
    }
    #define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op))
    
    // Objects/object.c
    void
    _Py_Dealloc(PyObject *op)
    {
        // 找到float类型的 tp_dealloc 函数
        destructor dealloc = Py_TYPE(op)->tp_dealloc;
        // 在refchain双向链表中摘除此对象。
        _Py_ForgetReference(op);
        // 执行float类型的 tp_dealloc 函数,去进行缓存或垃圾回收。
        (*dealloc)(op);
    }
    void
    _Py_ForgetReference(PyObject *op)
    {
        ...
        // 在refchain链表中移除此对象
        op->_ob_next->_ob_prev = op->_ob_prev;
        op->_ob_prev->_ob_next = op->_ob_next;
        op->_ob_next = op->_ob_prev = NULL;
        _Py_INC_TPFREES(op);
    }
    
    // Objects/floatobject.c
    #define PyFloat_MAXFREELIST    100
    static int numfree = 0;
    static PyFloatObject *free_list = NULL;
    // float类型中函数的对应关系
    PyTypeObject PyFloat_Type = {
        PyVarObject_HEAD_INIT(&PyType_Type, 0)
        "float",
        sizeof(PyFloatObject),
        0,
        // tp_dealloc表示执行float_dealloc方法
        (destructor)float_dealloc,                  /* tp_dealloc */
        0,                                          /* tp_print */
        ...
    };
    static void
    float_dealloc(PyFloatObject *op)
    {
        // 检测是否是float类型
        if (PyFloat_CheckExact(op)) {
            // 检测free_list中缓存的个数是否已满,如果已满,则直接将对象销毁。
            if (numfree >= PyFloat_MAXFREELIST)  {
                // 销毁
                PyObject_FREE(op);
                return;
            }
            // 将对象加入到free_list链表中
            numfree++;
            Py_TYPE(op) = (struct _typeobject *)free_list;
            free_list = op;
        }
        else
            Py_TYPE(op)->tp_free((PyObject *)op);
    }
    

    Int类型

    创建

    age = 19

    当在python中创建一个整型数据时,底层会触发他的如下源码:

    PyObject *
    PyLong_FromLong(long ival)
    {
        PyLongObject *v;
        ...
        // 优先去小数据池中检查,如果在范围内则直接获取不再重新开辟内存。( -5 <= value < 257)
        CHECK_SMALL_INT(ival);
        ...
        // 非小数字池中的值,重新开辟内存并初始化
        v = _PyLong_New(ndigits);
        if (v != NULL) {
            digit *p = v->ob_digit;
            Py_SIZE(v) = ndigits*sign;
            t = abs_ival;
            ...
        }
        return (PyObject *)v;
    }
    #define NSMALLNEGINTS           5
    #define NSMALLPOSINTS           257
    #define CHECK_SMALL_INT(ival) 
        do if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) { 
            return get_small_int((sdigit)ival); 
        } while(0)
    static PyObject *
    get_small_int(sdigit ival)
    {
        PyObject *v;
        v = (PyObject *)&small_ints[ival + NSMALLNEGINTS];
        // 引用计数器 + 1
        Py_INCREF(v);
        ...
        return v;
    }
    PyLongObject *
    _PyLong_New(Py_ssize_t size)
    {
        // 创建PyLongObject的指针变量
        PyLongObject *result;
        ...
        // 根据长度进行开辟内存
        result = PyObject_MALLOC(offsetof(PyLongObject, ob_digit) +
                                 size*sizeof(digit));
        ...
        // 对内存中的数据进行初始化并添加到refchain链表中。
        return (PyLongObject*)PyObject_INIT_VAR(result, &PyLong_Type, size);
    }
    
    // Include/objimpl.h
    #define PyObject_NewVar(type, typeobj, n) 
                    ( (type *) _PyObject_NewVar((typeobj), (n)) )
    static inline PyVarObject*
    _PyObject_INIT_VAR(PyVarObject *op, PyTypeObject *typeobj, Py_ssize_t size)
    {
        assert(op != NULL);
        Py_SIZE(op) = size;
        // 对象初始化
        PyObject_INIT((PyObject *)op, typeobj);
        return op;
    }
    #define PyObject_INIT(op, typeobj) 
        _PyObject_INIT(_PyObject_CAST(op), (typeobj))
    static inline PyObject*
    _PyObject_INIT(PyObject *op, PyTypeObject *typeobj)
    {
        assert(op != NULL);
        Py_TYPE(op) = typeobj;
        if (PyType_GetFlags(typeobj) & Py_TPFLAGS_HEAPTYPE) {
            Py_INCREF(typeobj);
        }
        // 对象初始化,并把对象加入到refchain链表。
        _Py_NewReference(op);
        return op;
    }
    
    // Objects/object.c
    // 维护了所有对象的一个环状双向链表
    static PyObject refchain = {&refchain, &refchain};
    void
    _Py_AddToAllObjects(PyObject *op, int force)
    {
        if (force || op->_ob_prev == NULL) {
            op->_ob_next = refchain._ob_next;
            op->_ob_prev = &refchain;
            refchain._ob_next->_ob_prev = op;
            refchain._ob_next = op;
        }
    }
    void
    _Py_NewReference(PyObject *op)
    {
        _Py_INC_REFTOTAL;
        // 引用计数器初始化为1。
        op->ob_refcnt = 1;
        // 对象添加到双向链表refchain中。
        _Py_AddToAllObjects(op, 1);
        _Py_INC_TPALLOCS(op);
    }

    引用

    value = 69
    data = value

    类似于出现这种引用关系时,内部其实就是将对象的引用计数器+1,源码同float类型引用。

    销毁

    value = 699
    del value

    在项目中如果出现这种删除的语句,则内部会将引用计数器-1,如果引用计数器减为0,则直接进行垃圾回收。(int类型是基于小数据池而不是free_list做的缓存,所以不会在销毁时缓存数据)。
    C源码执行流程如下:

    // Include/object.h
    static inline void _Py_DECREF(const char *filename, int lineno,
                                  PyObject *op)
    {
        (void)filename; /* may be unused, shut up -Wunused-parameter */
        (void)lineno; /* may be unused, shut up -Wunused-parameter */
        _Py_DEC_REFTOTAL;
        // 引用计数器-1,如果引用计数器为0,则执行 _Py_Dealloc去垃圾回收。
        if (--op->ob_refcnt != 0) {
    #ifdef Py_REF_DEBUG
            if (op->ob_refcnt < 0) {
                _Py_NegativeRefcount(filename, lineno, op);
            }
    #endif
        }
        else {
            _Py_Dealloc(op);
        }
    }
    #define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op))
    
    // Objects/object.c
    void
    _Py_Dealloc(PyObject *op)
    {
        // 找到int类型的 tp_dealloc 函数(int类中没有定义tp_dealloc函数,需要去父级PyBaseObject_Type中找tp_dealloc函数)
        // 此处体现所有的类型都继承object
        destructor dealloc = Py_TYPE(op)->tp_dealloc;
        // 在refchain双向链表中摘除此对象。
        _Py_ForgetReference(op);
        // 执行int类型的 tp_dealloc 函数,去进行垃圾回收。
        (*dealloc)(op);
    }
    void
    _Py_ForgetReference(PyObject *op)
    {
        ...
        // 在refchain链表中移除此对象
        op->_ob_next->_ob_prev = op->_ob_prev;
        op->_ob_prev->_ob_next = op->_ob_next;
        op->_ob_next = op->_ob_prev = NULL;
        _Py_INC_TPFREES(op);
    }
    
    // Objects/longobjet.c
    PyTypeObject PyLong_Type = {
        PyVarObject_HEAD_INIT(&PyType_Type, 0)
        "int",                                      /* tp_name */
        offsetof(PyLongObject, ob_digit),           /* tp_basicsize */
        sizeof(digit),                              /* tp_itemsize */
        0,                                          /* tp_dealloc */
          ...
        PyObject_Del,                               /* tp_free */
    };
    
    Objects/typeobject.c
    PyTypeObject PyBaseObject_Type = {
        PyVarObject_HEAD_INIT(&PyType_Type, 0)
        "object",                                   /* tp_name */
        sizeof(PyObject),                           /* tp_basicsize */
        0,                                          /* tp_itemsize */
        object_dealloc,                             /* tp_dealloc */
        ...
        PyObject_Del,                               /* tp_free */
    };
    static void
    object_dealloc(PyObject *self)
    {
        // 调用int类型的 tp_free,即:PyObject_Del去销毁对象。
        Py_TYPE(self)->tp_free(self);
    }
    

    Str类型

    创建

    name = "featherwit"

    当在python中创建一个字符串数据时,底层会触发他的如下源码:

    Objects/unicodeobject.c
    PyObject *
    PyUnicode_DecodeUTF8Stateful(const char *s,Py_ssize_t size,const char *errors,Py_ssize_t *consumed)
    {
        return unicode_decode_utf8(s, size, _Py_ERROR_UNKNOWN, errors, consumed);
    }
    static PyObject *
    unicode_decode_utf8(const char *s, Py_ssize_t size,_Py_error_handler error_handler, const char *errors,Py_ssize_t *consumed);
    {
        ...
        // 如果字符串长度为1,并且是ascii字符,直接去缓存链表 *unicode_latin1[256] 中获取。
        if (size == 1 && (unsigned char)s[0] < 128) {
            if (consumed)
                *consumed = 1;
            return get_latin1_char((unsigned char)s[0]);
        }
        // 对传入的utf-8的字节进行处理,并选择合适的方式转换成unicode字符串。(latin2/ucs2/ucs4)。
        ...
        return _PyUnicodeWriter_Finish(&writer);
    }
    static PyObject*
    get_latin1_char(unsigned char ch)
    {
        PyObject *unicode = unicode_latin1[ch];
        if (!unicode) {
            unicode = PyUnicode_New(1, ch);
            if (!unicode)
                return NULL;
            PyUnicode_1BYTE_DATA(unicode)[0] = ch;
            assert(_PyUnicode_CheckConsistency(unicode, 1));
            unicode_latin1[ch] = unicode;
        }
        Py_INCREF(unicode);
        return unicode;
    }
    PyObject *
    _PyUnicodeWriter_Finish(_PyUnicodeWriter *writer)
    {
        PyObject *str;
        // 写入值到str
        str = writer->buffer;
        writer->buffer = NULL;
        if (writer->readonly) {
            assert(PyUnicode_GET_LENGTH(str) == writer->pos);
            return str;
        }
        if (PyUnicode_GET_LENGTH(str) != writer->pos) {
            PyObject *str2;
            // 创建对象
            str2 = resize_compact(str, writer->pos);
            if (str2 == NULL) {
                Py_DECREF(str);
                return NULL;
            }
            str = str2;
        }
        assert(_PyUnicode_CheckConsistency(str, 1));
        return unicode_result_ready(str);
    }
    static PyObject*
    resize_compact(PyObject *unicode, Py_ssize_t length)
    {
        ...
        // 开辟内存
        new_unicode = (PyObject *)PyObject_REALLOC(unicode, new_size);
        if (new_unicode == NULL) {
            _Py_NewReference(unicode);
            PyErr_NoMemory();
            return NULL;
        }
        unicode = new_unicode;
        // 把对象加入到refchain链表
        _Py_NewReference(unicode);
        ...
        return unicode;
    }
    

    在字符串中除了会执行上述代码之外,还会执行以下代码实现内部的驻留机制。为了更好的理解,你可以认为驻留机制:将字符串保存到一个名为 interned 的字典中,以后再使用时 直接去字典中获取不再需要创建。

    实际在源码中每次都会创建新的字符串,只不过在内部检测是否已驻留到interned中,如果在则使用interned内部的原来的字符串,把新创建的字符串当做垃圾去回收。

    Objects/unicodeobject.c
    void
    PyUnicode_InternInPlace(PyObject **p)
    {
        PyObject *s = *p;
        PyObject *t;
    #ifdef Py_DEBUG
        assert(s != NULL);
        assert(_PyUnicode_CHECK(s));
    #else
        if (s == NULL || !PyUnicode_Check(s))
            return;
    #endif
        /* If it's a subclass, we don't really know what putting
           it in the interned dict might do. */
        if (!PyUnicode_CheckExact(s))
            return;
        if (PyUnicode_CHECK_INTERNED(s))
            return;
        if (interned == NULL) {
            interned = PyDict_New();
            if (interned == NULL) {
                PyErr_Clear(); /* Don't leave an exception */
                return;
            }
        }
        Py_ALLOW_RECURSION
        // 将新字符串驻留到interned字典中,不存在则驻留,已存在则不再重复驻留。
        t = PyDict_SetDefault(interned, s, s);
        Py_END_ALLOW_RECURSION
        if (t == NULL) {
            PyErr_Clear();
            return;
        }
        // 存在,使用已驻留的字符串 并 将引用计数器+1
        if (t != s) {
            Py_INCREF(t);
            Py_SETREF(*p, t); // 处理临时对象
            return;
        }
        /* The two references in interned are not counted by refcnt.
           The deallocator will take care of this */
        Py_REFCNT(s) -= 2; // 让临时对象可被回收。
        _PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL;
    }

    引用

    同上,引用计数器 + 1 .

    销毁

    val = "featherwit"
    del val

    在项目中如果出现这种删除的语句,则内部会将引用计数器-1,如果引用计数器减为0,则进行缓存或垃圾回收。

    // Include/object.h
    static inline void _Py_DECREF(const char *filename, int lineno,
                                  PyObject *op)
    {
        (void)filename; /* may be unused, shut up -Wunused-parameter */
        (void)lineno; /* may be unused, shut up -Wunused-parameter */
        _Py_DEC_REFTOTAL;
        // 引用计数器-1,如果引用计数器为0,则执行 _Py_Dealloc去缓存或垃圾回收。
        if (--op->ob_refcnt != 0) {
    #ifdef Py_REF_DEBUG
            if (op->ob_refcnt < 0) {
                _Py_NegativeRefcount(filename, lineno, op);
            }
    #endif
        }
        else {
            _Py_Dealloc(op);
        }
    }
    #define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op))
    
    // Objects/object.c
    void
    _Py_Dealloc(PyObject *op)
    {
        // 找到str类型的 tp_dealloc 函数
        destructor dealloc = Py_TYPE(op)->tp_dealloc;
        // 在refchain双向链表中摘除此对象。
        _Py_ForgetReference(op);
        // 执行float类型的 tp_dealloc 函数,去进行缓存或垃圾回收。
        (*dealloc)(op);
    }
    void
    _Py_ForgetReference(PyObject *op)
    {
        ...
        // 在refchain链表中移除此对象
        op->_ob_next->_ob_prev = op->_ob_prev;
        op->_ob_prev->_ob_next = op->_ob_next;
        op->_ob_next = op->_ob_prev = NULL;
        _Py_INC_TPFREES(op);
    }
    
    // Objects/unicodeobject.c
    PyTypeObject PyUnicode_Type = {
        PyVarObject_HEAD_INIT(&PyType_Type, 0)
        "str",                        /* tp_name */
        sizeof(PyUnicodeObject),      /* tp_basicsize */
        0,                            /* tp_itemsize */
        /* Slots */
        (destructor)unicode_dealloc,  /* tp_dealloc */
           ...
        PyObject_Del,                 /* tp_free */
    };
    static void
    unicode_dealloc(PyObject *unicode)
    {
        switch (PyUnicode_CHECK_INTERNED(unicode)) {
        case SSTATE_NOT_INTERNED:
            break;
        case SSTATE_INTERNED_MORTAL:
            /* revive dead object temporarily for DelItem */
            Py_REFCNT(unicode) = 3;
            // 在interned中删除驻留的字符串
            if (PyDict_DelItem(interned, unicode) != 0)
                Py_FatalError(
                    "deletion of interned string failed");
            break;
        case SSTATE_INTERNED_IMMORTAL:
            Py_FatalError("Immortal interned string died.");
            /* fall through */
        default:
            Py_FatalError("Inconsistent interned string state.");
        }
        if (_PyUnicode_HAS_WSTR_MEMORY(unicode))
            PyObject_DEL(_PyUnicode_WSTR(unicode));
        if (_PyUnicode_HAS_UTF8_MEMORY(unicode))
            PyObject_DEL(_PyUnicode_UTF8(unicode));
        if (!PyUnicode_IS_COMPACT(unicode) && _PyUnicode_DATA_ANY(unicode))
            PyObject_DEL(_PyUnicode_DATA_ANY(unicode));
        // 内存中销毁对象
        Py_TYPE(unicode)->tp_free(unicode);
    }
    

    List类型

    创建

    v = [11, 22, 33]

    当创建一个列表时候,内部的C源码会执行如下:

    // Objects/listobject.c
    #define PyList_MAXFREELIST 80
    // free_list用于对list对象进行缓存,最多可缓存80个对象
    static PyListObject *free_list[PyList_MAXFREELIST];
    // free_list中可用的对象
    static int numfree = 0;
    PyObject *
    PyList_New(Py_ssize_t size)
    {
        PyListObject *op;
        if (size < 0) {
            PyErr_BadInternalCall();
            return NULL;
        }
        if (numfree) {
            // 如果free_list中有缓存的对象,则直接从free_list中获取一个对象来使用。
            numfree--;
            op = free_list[numfree];
            _Py_NewReference((PyObject *)op);
        } else {
            // 缓存中没有,则需要 开辟内存 & 初始化对象
            op = PyObject_GC_New(PyListObject, &PyList_Type);
            if (op == NULL)
                return NULL;
        }
        if (size <= 0)
            op->ob_item = NULL;
        else {
            op->ob_item = (PyObject **) PyMem_Calloc(size, sizeof(PyObject *));
            if (op->ob_item == NULL) {
                Py_DECREF(op);
                return PyErr_NoMemory();
            }
        }
        Py_SIZE(op) = size;
        op->allocated = size;
        // 把对象加入到分代回收的三代中的0代链表中。
        _PyObject_GC_TRACK(op);
        return (PyObject *) op;
    }
    
    static inline void _PyObject_GC_TRACK_impl(const char *filename, int lineno,
                                               PyObject *op)
    {
        _PyObject_ASSERT_FROM(op, !_PyObject_GC_IS_TRACKED(op),
                              "object already tracked by the garbage collector",
                              filename, lineno, "_PyObject_GC_TRACK");
        PyGC_Head *gc = _Py_AS_GC(op);
        _PyObject_ASSERT_FROM(op,
                              (gc->_gc_prev & _PyGC_PREV_MASK_COLLECTING) == 0,
                              "object is in generation which is garbage collected",
                              filename, lineno, "_PyObject_GC_TRACK");
        // 把对象加入到链表中,链表尾部还是gc.generation0。
        PyGC_Head *last = (PyGC_Head*)(_PyRuntime.gc.generation0->_gc_prev);
        _PyGCHead_SET_NEXT(last, gc);
        _PyGCHead_SET_PREV(gc, last);
        _PyGCHead_SET_NEXT(gc, _PyRuntime.gc.generation0);
        _PyRuntime.gc.generation0->_gc_prev = (uintptr_t)gc;
    }
    #define _PyObject_GC_TRACK(op) 
        _PyObject_GC_TRACK_impl(__FILE__, __LINE__, _PyObject_CAST(op))
    
    Include/objimpl.h
    #define PyObject_GC_New(type, typeobj) 
                ( (type *) _PyObject_GC_New(typeobj) )
    
    //Modules/gcmodule.c
    PyObject *
     _PyObject_GC_New(PyTypeObject *tp)
    {
        // 创建对象
        PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp));
        if (op != NULL)
            // 初始化对象并把对象加入到refchain链表中。
            op = PyObject_INIT(op, tp);
        return op;
    }
    PyObject *
    _PyObject_GC_Malloc(size_t basicsize)
    {
       return _PyObject_GC_Alloc(0, basicsize);
    }
    static PyObject *
    _PyObject_GC_Alloc(int use_calloc, size_t basicsize)
    {
       // 包含分代回收的三代链表
       struct _gc_runtime_state *state = &_PyRuntime.gc;
       PyObject *op;
       PyGC_Head *g;
       size_t size;
       if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head))
          return PyErr_NoMemory();
       size = sizeof(PyGC_Head) + basicsize;
       // 创建 gc head
       if (use_calloc)
          g = (PyGC_Head *)PyObject_Calloc(1, size);
       else
          g = (PyGC_Head *)PyObject_Malloc(size);
       if (g == NULL)
          return PyErr_NoMemory();
       assert(((uintptr_t)g & 3) == 0);  // g must be aligned 4bytes boundary
       g->_gc_next = 0;
       g->_gc_prev = 0;
       // 分代回收的0代数量+1 
       state->generations[0].count++; /* number of allocated GC objects */
       // 如果0代超出自己的阈值,进行垃圾分代回收。
       if (state->generations[0].count > state->generations[0].threshold && state->enabled && state->generations[0].threshold && !state->collecting && !PyErr_Occurred()) 
       {
          // 正在收集
          state->collecting = 1;
          // 去进行垃圾回收收集
          collect_generations(state);
          // 结束收集
          state->collecting = 0;
       }
       op = FROM_GC(g);
       return op;
    }
    /* Get the object given the GC head */
    #define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1))
    static Py_ssize_t
    collect_generations(struct _gc_runtime_state *state)
    {
       Py_ssize_t n = 0;
       // 倒序循环三代,按照:2、1、0顺序
       for (int i = NUM_GENERATIONS-1; i >= 0; i--) {
          if (state->generations[i].count > state->generations[i].threshold) {
                if (i == NUM_GENERATIONS - 1 && state->long_lived_pending < state->long_lived_total / 4)
                   continue;
                  // 去进行回收,回收当前代之前的所有代。
                n = collect_with_callback(state, i);
                break;
          }
       }
       return n;
    }
    static Py_ssize_t
    collect_with_callback(struct _gc_runtime_state *state, int generation)
    {
       ...
       // 回收,0、1、2代(通过引用传参获取 已回收的和未回收的链表)
       result = collect(state, generation, &collected, &uncollectable, 0);
       ...
       return result;
    }
    /* This is the main function.  Read this to understand how the collection process works. */
    static Py_ssize_t
    collect(struct _gc_runtime_state *state, int generation,
          Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable, int nofail)
    {
       int i;
       Py_ssize_t m = 0; /* # objects collected */
       Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
       PyGC_Head *young; /* the generation we are examining */
       PyGC_Head *old; /* next older generation */
       PyGC_Head unreachable; /* non-problematic unreachable trash */
       PyGC_Head finalizers;  /* objects with, & reachable from, __del__ */
       PyGC_Head *gc;
       _PyTime_t t1 = 0;   /* initialize to prevent a compiler warning */
       /* update collection and allocation counters */
       // generation分别会是 0 1 2
       // 让当前执行收集的代的更高级的代的count加1 ?例如:0带时,让1代的count+1
       // 因为当前带扫描一次,则更高级代count+1,当前带扫描到10次时,更高级的带要扫描一次。
       if (generation+1 < NUM_GENERATIONS)
          state->generations[generation+1].count += 1;
       // 比当前代低的代的count设置为0,因为当前带扫描时候会携带年轻带一起扫描,本次扫描之后对象都会升级到高级别的带,年轻代则为0
       for (i = 0; i <= generation; i++)
          state->generations[i].count = 0;
       // 总结:比当前扫描的代高的带count+1,自己和比自己低的代count设置为0.
       // 将比自己代低的所有代,搞到一个链表中
       // #define GEN_HEAD(state, n) (&(state)->generations[n].head)
       for (i = 0; i < generation; i++) {
          gc_list_merge(GEN_HEAD(state, i), GEN_HEAD(state, generation));
       }
       // 获取当前代的head(链表头)
       // #define GEN_HEAD(state, n) (&(state)->generations[n].head)
       young = GEN_HEAD(state, generation);
       // 比当前代老的head(链表头),如果是0、1、2中的2代时,则两个值相等。
       if (generation < NUM_GENERATIONS-1)
          //0、1代
          old = GEN_HEAD(state, generation+1);
       else
          //2代
          old = young;
       // 循环当前代(包含比自己年轻的代的链表)重的每个元素,将引用计数器拷贝到gc_refs中。
       // 拷贝出来的用于以后做计数器的计算,不回去更改原来的引用计数器的值。
       update_refs(young);  // gc_prev is used for gc_refs
       // 处理循环引用,把循环引用的位置值为0.
       subtract_refs(young);
       // 将链表中所有引用计数器为0的,移动到unreachable链表(不可达链表)。
       // 循环young链表中的每个元素,并根据拷贝的引用计数器gc_refs进行判断,如果为0则放入不可达链表;
       gc_list_init(&unreachable);
       move_unreachable(young, &unreachable);  // gc_prev is pointer again
       validate_list(young, 0);
       untrack_tuples(young);
       /* Move reachable objects to next generation. */
       // 将可达对象加入到下一代。
       if (young != old) {
          // 如果是0、1代,则升级到下一代。
          if (generation == NUM_GENERATIONS - 2) {
                  // 如果是1代,则更新
                state->long_lived_pending += gc_list_size(young);
          }
          // 把young链表拼接到old链表中。
          gc_list_merge(young, old);
       }
       else {
          /* We only untrack dicts in full collections, to avoid quadratic
             dict build-up. See issue #14775. */
          // 如果是2代,则更新long_lived_total和long_lived_pending
          untrack_dicts(young);
          state->long_lived_pending = 0;
          state->long_lived_total = gc_list_size(young);
       }
       // 循环所有不可达的元素,把具有 __del__ 方法对象放到finalizers链表中。
       // 调用__del__之后,再会进行让他们在销毁。
       gc_list_init(&finalizers);
       // NEXT_MASK_UNREACHABLE is cleared here.
       // After move_legacy_finalizers(), unreachable is normal list.
       move_legacy_finalizers(&unreachable, &finalizers);
       /* finalizers contains the unreachable objects with a legacy finalizer;
       * unreachable objects reachable *from* those are also uncollectable,
       * and we move those into the finalizers list too.
       */
       move_legacy_finalizer_reachable(&finalizers);
       validate_list(&finalizers, 0);
       validate_list(&unreachable, PREV_MASK_COLLECTING);
        ...
       /* Clear weakrefs and invoke callbacks as necessary. */
       // 循环所有的不可达元素,处理所有弱引用到unreachable,如果弱引用对象仍然生存则放回old链表中。
       m += handle_weakrefs(&unreachable, old);
       validate_list(old, 0);
       validate_list(&unreachable, PREV_MASK_COLLECTING);
       /* Call tp_finalize on objects which have one. */
       // 执行那些具有的__del__方法的对象。
       finalize_garbage(&unreachable);
       // 最后,进行进行对垃圾的清除。
       if (check_garbage(&unreachable)) { // clear PREV_MASK_COLLECTING here
          gc_list_merge(&unreachable, old);
       }
       else {
          /* Call tp_clear on objects in the unreachable set.  This will cause
             * the reference cycles to be broken.  It may also cause some objects
             * in finalizers to be freed.
             */
          m += gc_list_size(&unreachable);
          delete_garbage(state, &unreachable, old);
       }
       /* Collect statistics on uncollectable objects found and print
       * debugging information. */
       for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
          n++;
          if (state->debug & DEBUG_UNCOLLECTABLE)
                debug_cycle("uncollectable", FROM_GC(gc));
       }
       if (state->debug & DEBUG_STATS) {
          double d = _PyTime_AsSecondsDouble(_PyTime_GetMonotonicClock() - t1);
          PySys_WriteStderr(
                "gc: done, %" PY_FORMAT_SIZE_T "d unreachable, "
                "%" PY_FORMAT_SIZE_T "d uncollectable, %.4fs elapsed
    ",
                n+m, n, d);
       }
       /* Append instances in the uncollectable set to a Python
       * reachable list of garbage.  The programmer has to deal with
       * this if they insist on creating this type of structure.
       */
       // 执行完 __del__没有,不应该被删除的对象,再重新加入到可达链表中。
       handle_legacy_finalizers(state, &finalizers, old);
       validate_list(old, 0);
       /* Clear free list only during the collection of the highest
       * generation */
       if (generation == NUM_GENERATIONS-1) {
          clear_freelists();
       }
        ...
       return n+m;
    }

    引用

    v1 = [11,22,33]
    v2 = v1

    当对对象进行引用时候,内部引用计数器+1,原理同上。

    销毁

    v1 = [11,22,33]
    del v1

    对列表对象进行销毁时,本质上就会执行引用计数器-1(同上),但当引用计数器为0时候,会执行list对象的tp_dealloc,即:

    // Object/listobject.c
    PyTypeObject PyList_Type = {
        PyVarObject_HEAD_INIT(&PyType_Type, 0)
        "list",
        sizeof(PyListObject),
        0,
        (destructor)list_dealloc,                   /* tp_dealloc */
        ...
        PyObject_GC_Del,                            /* tp_free */
    };
    /* Empty list reuse scheme to save calls to malloc and free */
    #ifndef PyList_MAXFREELIST
    #define PyList_MAXFREELIST 80
    #endif
    static PyListObject *free_list[PyList_MAXFREELIST];
    static int numfree = 0;
    static void
    list_dealloc(PyListObject *op)
    {
        Py_ssize_t i;
        // 从分代回收的的代中移除
        PyObject_GC_UnTrack(op);
        Py_TRASHCAN_BEGIN(op, list_dealloc)
        if (op->ob_item != NULL) {
            /* Do it backwards, for Christian Tismer.
               There's a simple test case where somehow this reduces
               thrashing when a *very* large list is created and
               immediately deleted. */
            i = Py_SIZE(op);
            while (--i >= 0) {
                Py_XDECREF(op->ob_item[i]);
            }
            PyMem_FREE(op->ob_item);
        }
        if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op))
            // free_list中还么有占满80,不销毁并缓冲在free_list中
            free_list[numfree++] = op;
        else
            // 销毁并在refchain中移除
            Py_TYPE(op)->tp_free((PyObject *)op);
        Py_TRASHCAN_END
    }
    

    Tuple类型

    创建

    v = (11,22,33)

    当创建元组时候,会执行如下源码:

    // Objects/tupleobject.c
    #define PyTuple_MAXSAVESIZE     20  /* Largest tuple to save on free list */
    #define PyTuple_MAXFREELIST  2000  /* Maximum number of tuples of each size to save */
    static PyTupleObject *free_list[PyTuple_MAXSAVESIZE]; // free_list[20] = {链表、链表..}
    static int numfree[PyTuple_MAXSAVESIZE]; // numfree[2000]表示每个链表的长度
    PyObject *
    PyTuple_New(Py_ssize_t size)
    {
        PyTupleObject *op;
        ...
        // free_list第0个元素存储的是空元祖
        if (size == 0 && free_list[0]) {
            op = free_list[0];
            Py_INCREF(op);
            return (PyObject *) op;
        }
        // 有缓存的tuple对象,则从free_list中获取
        if (size < PyTuple_MAXSAVESIZE && (op = free_list[size]) != NULL) {
            // 获取对象并初始化
            free_list[size] = (PyTupleObject *) op->ob_item[0];
            numfree[size]--;
            Py_SIZE(op) = size;
            Py_TYPE(op) = &PyTuple_Type;
            // 对象加入到refchain链表。
            _Py_NewReference((PyObject *)op);
        }
        else
        {
            ..
            // 没有缓存数据,则创建对象
            op = PyObject_GC_NewVar(PyTupleObject, &PyTuple_Type, size);
            if (op == NULL)
                return NULL;
        }
        for (i=0; i < size; i++)
            op->ob_item[i] = NULL;
        if (size == 0) {
            free_list[0] = op;
            ++numfree[0];
            Py_INCREF(op);          /* extra INCREF so that this is never freed */
        }
        // 对象加入到分代的链表。
        _PyObject_GC_TRACK(op);
        return (PyObject *) op;
    }
    
    // Includes/objimpl.h
    #define PyObject_GC_NewVar(type, typeobj, n) 
                    ( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
    
    Objects/gcmodules.c
    PyVarObject *
    _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
    {
        size_t size;
        PyVarObject *op;
        if (nitems < 0) {
            PyErr_BadInternalCall();
            return NULL;
        }
        size = _PyObject_VAR_SIZE(tp, nitems);
        // 开内存 & 分代 & 超过阈值则垃圾回收(流程同上述 列表过程)
        op = (PyVarObject *) _PyObject_GC_Malloc(size);
        if (op != NULL)
            op = PyObject_INIT_VAR(op, tp, nitems);
        return op;
    }

    引用

    v1 = (11,22,33)
    v2 = v1

    引用时会触发引用计数器 + 1,具体流程同上。

    销毁

    v = (11,22,33)
    del v

    销毁对象时候,执行引用计数器-1,如果计数器减为0,则触发tuple类型的tp_dealloc,详细如下:

    PyTypeObject PyTuple_Type = {
        PyVarObject_HEAD_INIT(&PyType_Type, 0)
        "tuple",
        sizeof(PyTupleObject) - sizeof(PyObject *),
        sizeof(PyObject *),
        (destructor)tupledealloc,                   /* tp_dealloc */
        ...
        PyObject_GC_Del,                            /* tp_free */
    };
    static void
    tupledealloc(PyTupleObject *op)
    {
        Py_ssize_t i;
        Py_ssize_t len =  Py_SIZE(op);
        // 从分代的链表中移除
        PyObject_GC_UnTrack(op);
        Py_TRASHCAN_BEGIN(op, tupledealloc)
        if (len > 0) {
            i = len;
            while (--i >= 0)
                Py_XDECREF(op->ob_item[i]);
            // 缓存到free_list中
            if (len < PyTuple_MAXSAVESIZE && numfree[len] < PyTuple_MAXFREELIST &&
                Py_TYPE(op) == &PyTuple_Type)
            {
                op->ob_item[0] = (PyObject *) free_list[len];
                numfree[len]++;
                free_list[len] = op;
                // 结束
                goto done; /* return */
            }
        }
        // 不缓存,则直接销毁对象并在refchain链表中移除。
        Py_TYPE(op)->tp_free((PyObject *)op);
    done:
        Py_TRASHCAN_END
    }
    

    Dict类型

    创建

    v = {"name":"小白","age":18}

    当创建一个字典对象时,Python底层会执行如下源码:

    #define PyDict_MAXFREELIST 80
    // 缓存dict对象的free_list
    static PyDictObject *free_list[PyDict_MAXFREELIST];
    static int numfree = 0;
    PyObject *
    PyDict_New(void)
    {
        dictkeys_incref(Py_EMPTY_KEYS);
        return new_dict(Py_EMPTY_KEYS, empty_values);
    }
    /* Consumes a reference to the keys object */
    static PyObject *
    new_dict(PyDictKeysObject *keys, PyObject **values)
    {
        PyDictObject *mp;
        assert(keys != NULL);
        // 如果有缓存,则从缓存区获取一个对象
        if (numfree) {
            mp = free_list[--numfree];
            assert (mp != NULL);
            assert (Py_TYPE(mp) == &PyDict_Type);
            _Py_NewReference((PyObject *)mp);
        }
        else {
            // 没有缓存,则去创建字典对象。(源码流程同list类型)
            mp = PyObject_GC_New(PyDictObject, &PyDict_Type);
            if (mp == NULL) {
                dictkeys_decref(keys);
                if (values != empty_values) {
                    free_values(values);
                }
                return NULL;
            }
        }
        mp->ma_keys = keys;
        mp->ma_values = values;
        mp->ma_used = 0;
        mp->ma_version_tag = DICT_NEXT_VERSION();
        ASSERT_CONSISTENT(mp);
        return (PyObject *)mp;
    }

    引用

    v1 = {"name":"小白","age":18}
    v2 = v1

    出现引用,则应用计数器+1(同上)。

    销毁

    v1 = {"name":"小白","age":18}
    del v1

    销毁一个对象时候,引用计数器-1,当减到0时候,则触发dict类型的tp_dealloc,源码如下:

    // Object/dictobject.c
    PyTypeObject PyDict_Type = {
        PyVarObject_HEAD_INIT(&PyType_Type, 0)
        "dict",
        sizeof(PyDictObject),
        0,
        (destructor)dict_dealloc,                   /* tp_dealloc */
        ...
        PyObject_GC_Del,                            /* tp_free */
    };
    static void
    dict_dealloc(PyDictObject *mp)
    {
        PyObject **values = mp->ma_values;
        PyDictKeysObject *keys = mp->ma_keys;
        Py_ssize_t i, n;
        // 从分代链表中移除
        PyObject_GC_UnTrack(mp);
        Py_TRASHCAN_BEGIN(mp, dict_dealloc)
        ...
        // 缓存区为满,则缓存
        if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type)
            free_list[numfree++] = mp;
        else
            // 已满则销毁,并在refchain中移除。
            Py_TYPE(mp)->tp_free((PyObject *)mp);
        Py_TRASHCAN_END
    }
    

      

  • 相关阅读:
    详解GaussDB(for MySQL)服务:复制策略与可用性分析
    华为云的研究成果又双叒叕被MICCAI收录了!
    充分释放数据价值:安全、可信6到飞起
    未来云原生世界的“领头羊”:容器批量计算项目Volcano 1.0版本发布
    一文带你掌握OBS的两种常见的鉴权方式
    数据库实践丨MySQL多表join分析
    技术贴丨教你使用华为云鲲鹏服务器部署Discuz!论坛
    python Scrapy 从零开始学习笔记(二)
    python Scrapy 从零开始学习笔记(一)
    从零开始学Electron笔记(七)
  • 原文地址:https://www.cnblogs.com/featherwit/p/12895449.html
Copyright © 2011-2022 走看看