zoukankan      html  css  js  c++  java
  • pl-svo代码解读

    pl-svo是在svo的基础上结合点和线特征的半直接法视觉里程计

    程序启动通过app文件夹下的run_pipeline.cpp主程序启动,其它的函数文件统一放在src文件夹下,我们先从run_pipeline.cpp进行分析,了解整个算法流程。

    首先定义了 svo_options的数据结构,里面包含的是程序的运行参数

    struct svo_options {
        int seq_offset;
        int seq_step;
        int seq_length;
        bool has_points;
        bool has_lines ;
        bool is_tum;
        string dataset_dir;
        string images_dir;
        string traj_out;
        string map_out;
    };

    接下来在plsvo命名空间下声明了一个 ConvergedSeed 结构类型和BenchmarkNode类

    struct ConvergedSeed {
      int x_, y_;
      Vector3d pos_;
      cv::Vec3b col_;
      ConvergedSeed(int x, int y, Vector3d pos, cv::Vec3b col) :
        x_(x), y_(y), pos_(pos), col_(col)
      {}
    };

    我们下面将详细介绍BenchmarkNode类,他包含了主程序的主要功能函数

    4个私有成员

      vk::AbstractCamera* cam_;
      FrameHandlerMono* vo_;
      DepthFilter* depth_filter_;
      std::list<ConvergedSeed> results_;

    公开的成员函数

    public:
      BenchmarkNode(vk::AbstractCamera *cam_);
      BenchmarkNode(vk::AbstractCamera *cam_, const plsvo::FrameHandlerMono::Options& handler_opts);
      ~BenchmarkNode();
      void depthFilterCbPt(plsvo::Point* point);
      void depthFilterCbLs(plsvo::LineSeg* ls);
      int runFromFolder(svo_options opts);
      int runFromFolder(vk::PinholeCamera* cam_, svo_options opts);
      int runFromFolder(vk::ATANCamera* cam_,    svo_options opts);
    };
    负责启动视觉里程计的同名构造函数

    BenchmarkNode::BenchmarkNode(vk::AbstractCamera* cam_)
    {
      vo_ = new plsvo::FrameHandlerMono(cam_);
      vo_->start();
    }
    
    BenchmarkNode::BenchmarkNode(
        vk::AbstractCamera* cam_,
        const plsvo::FrameHandlerMono::Options& handler_opts)
    {
      vo_ = new plsvo::FrameHandlerMono(cam_, handler_opts);
      vo_->start();
    }

    点和线特征的深度滤波器函数

    void BenchmarkNode::depthFilterCbPt(plsvo::Point* point)
    {
      cv::Vec3b color = point->obs_.front()->frame->img_pyr_[0].at<cv::Vec3b>(point->obs_.front()->px[0], point->obs_.front()->px[1]);
      results_.push_back(ConvergedSeed(
          point->obs_.front()->px[0], point->obs_.front()->px[1], point->pos_, color));
      delete point->obs_.front();
    }
    
    void BenchmarkNode::depthFilterCbLs(plsvo::LineSeg* ls)
    {
      cv::Vec3b color = ls->obs_.front()->frame->img_pyr_[0].at<cv::Vec3b>(ls->obs_.front()->spx[0], ls->obs_.front()->spx[1]);
      results_.push_back(ConvergedSeed(
          ls->obs_.front()->spx[0], ls->obs_.front()->spx[1], ls->spos_, color)); // test only with spoint
      delete ls->obs_.front();
    }

    int BenchmarkNode::runFromFolder是算法的主流程,读取数据文件并运行。

    int BenchmarkNode::runFromFolder(vk::ATANCamera* cam_, svo_options opts)

    获取img目录中的已排序文件列表

    YAML::Node dset_config = YAML::LoadFile(dataset_dir+"/dataset_params.yaml");

    获取img目录中的所有文件

        size_t max_len = 0;
        std::list<std::string> imgs;
        boost::filesystem::directory_iterator end_itr; // default construction yields past-the-end
        for (boost::filesystem::directory_iterator file(img_dir_path); file != end_itr; ++file)
        {
            boost::filesystem::path filename_path = file->path().filename();
            if (boost::filesystem::is_regular_file(file->status()) &&
                    (filename_path.extension() == ".png"  ||
                     filename_path.extension() == ".jpg"  ||
                     filename_path.extension() == ".jpeg" ||
                     filename_path.extension() == ".tiff") )
            {
                std::string filename(filename_path.string());
                imgs.push_back(filename);
                max_len = max(max_len, filename.length());
            }
        }

    按文件名排序; 如果需要,添加前导零以使文件名长度相等

        for (std::list<std::string>::iterator img = imgs.begin(); img != imgs.end(); ++img)
        {
            sorted_imgs[std::string(max_len - img->length(), '0') + (*img)] = *img;
            n_imgs++;
        }

    根据初始偏移,步长和数据长度把图像数据存储到

    std::map<std::string, std::string> sorted_imgs;

    场景初始化

    sceneRepresentation scene("../app/scene_config.ini");

    运行SVO进行姿态估计

    进入循环读入图像进行处理

    cv::Mat img(cv::imread(img_path.string(), CV_8UC1));

    图像去畸变

    cam_->undistortImage(img,img_rec);

    开始对图像进行处理

    vo_->addImage(img_rec, frame_counter / (double)fps_);
    void FrameHandlerMono::addImage(const cv::Mat& img, const double timestamp)

    Frame类初始化为new_frame_,创建图像金字塔(也作为img_pyr_存储在Frame中)

    new_frame_.reset(new Frame(cam_, img.clone(), timestamp));

    处理图像帧

      UpdateResult res = RESULT_FAILURE;
      if(stage_ == STAGE_DEFAULT_FRAME)
        res = processFrame();
      else if(stage_ == STAGE_SECOND_FRAME)
        res = processSecondFrame();
      else if(stage_ == STAGE_FIRST_FRAME)
        res = processFirstFrame();
      else if(stage_ == STAGE_RELOCALIZING)
        res = relocalizeFrame(SE3(Matrix3d::Identity(), Vector3d::Zero()),
                              map_.getClosestKeyframe(last_frame_));

    先处理第一帧,设置第一帧以进行身份转换,第一帧视为关键帧,进行特征提取并添加关键帧

    FrameHandlerMono::UpdateResult FrameHandlerMono::processFirstFrame()
    {
      // set first frame to identity transformation
      new_frame_->T_f_w_ = SE3(Matrix3d::Identity(), Vector3d::Zero());
      // for now the initialization is done with points and endpoints only (consider use lines)
      if(klt_homography_init_.addFirstFrame(new_frame_) == initialization::FAILURE)
        return RESULT_NO_KEYFRAME;
      new_frame_->setKeyframe();
      map_.addKeyframe(new_frame_);
      stage_ = STAGE_SECOND_FRAME;
      SVO_INFO_STREAM("Init: Selected first frame.");
      return RESULT_IS_KEYFRAME;
    }
    InitResult KltHomographyInit::addFirstFrame(FramePtr frame_ref)
    {
      reset();
      detectFeatures(frame_ref, px_ref_, f_ref_);
      if(px_ref_.size() < 100)
      //if(px_ref_.size() < 80)
      {
        SVO_WARN_STREAM_THROTTLE(2.0, "First image has less than 80 features. Retry in more textured environment.");
        return FAILURE;
      }
      frame_ref_ = frame_ref;
      // initialize points in current frame (query or second frame) with points in ref frame
      px_cur_.insert(px_cur_.begin(), px_ref_.begin(), px_ref_.end());
      return SUCCESS;
    }

    循环过来,对第二帧进行跟踪

    FrameHandlerBase::UpdateResult FrameHandlerMono::processSecondFrame()
    {
      initialization::InitResult res = klt_homography_init_.addSecondFrame(new_frame_);
      if(res == initialization::FAILURE)
        return RESULT_FAILURE;
      else if(res == initialization::NO_KEYFRAME)
        return RESULT_NO_KEYFRAME;
    
      // two-frame bundle adjustment
    #ifdef USE_BUNDLE_ADJUSTMENT
      ba::twoViewBA(new_frame_.get(), map_.lastKeyframe().get(), Config::lobaThresh(), &map_);
    #endif
    
      new_frame_->setKeyframe();
      double depth_mean, depth_min;
      frame_utils::getSceneDepth(*new_frame_, depth_mean, depth_min);
      depth_filter_->addKeyframe(new_frame_, depth_mean, 0.5*depth_min);
    
      // add frame to map
      map_.addKeyframe(new_frame_);
      stage_ = STAGE_DEFAULT_FRAME;
      klt_homography_init_.reset();
      SVO_INFO_STREAM("Init: Selected second frame, triangulated initial map.");
      return RESULT_IS_KEYFRAME;
    }

    对第二帧进行klt光流跟踪

    InitResult KltHomographyInit::addSecondFrame(FramePtr frame_cur)
    {
      trackKlt(frame_ref_, frame_cur, px_ref_, px_cur_, f_ref_, f_cur_, disparities_);
      SVO_INFO_STREAM("Init: KLT tracked "<< disparities_.size() <<" features");
    
      // check the number of points tracked is high enough
      if(disparities_.size() < Config::initMinTracked())
        return FAILURE;
    
      // check the median disparity is high enough to compute homography robustly
      double disparity = vk::getMedian(disparities_);
      SVO_INFO_STREAM("Init: KLT "<<disparity<<"px median disparity.");
      if(disparity < Config::initMinDisparity())
        return NO_KEYFRAME;
    
      computeHomography(
          f_ref_, f_cur_,
          frame_ref_->cam_->errorMultiplier2(), Config::poseOptimThresh(),
          inliers_, xyz_in_cur_, T_cur_from_ref_);
      SVO_INFO_STREAM("Init: Homography RANSAC "<<inliers_.size()<<" inliers.");
    
      if(inliers_.size() < Config::initMinInliers())
      {
        SVO_WARN_STREAM("Init WARNING: "<<Config::initMinInliers()<<" inliers minimum required.");
        return FAILURE;
      }
    
      // Rescale the map such that the mean scene depth is equal to the specified scale
      vector<double> depth_vec;
      for(size_t i=0; i<xyz_in_cur_.size(); ++i)
        depth_vec.push_back((xyz_in_cur_[i]).z());
      double scene_depth_median = vk::getMedian(depth_vec);
      double scale = Config::mapScale()/scene_depth_median;
      frame_cur->T_f_w_ = T_cur_from_ref_ * frame_ref_->T_f_w_;
      frame_cur->T_f_w_.translation() =
          -frame_cur->T_f_w_.rotation_matrix()*(frame_ref_->pos() + scale*(frame_cur->pos() - frame_ref_->pos()));
    
      // For each inlier create 3D point and add feature in both frames
      SE3 T_world_cur = frame_cur->T_f_w_.inverse();
      for(vector<int>::iterator it=inliers_.begin(); it!=inliers_.end(); ++it)
      {
        Vector2d px_cur(px_cur_[*it].x, px_cur_[*it].y);
        Vector2d px_ref(px_ref_[*it].x, px_ref_[*it].y);
        // add 3D point (in (w)olrd coordinates) and features if
        // BOTH ref and cur points lie within the image (with a margin)
        // AND the 3D point lies in front of the camera
        if(frame_ref_->cam_->isInFrame(px_cur.cast<int>(), 10) && frame_ref_->cam_->isInFrame(px_ref.cast<int>(), 10) && xyz_in_cur_[*it].z() > 0)
        {
          Vector3d pos = T_world_cur * (xyz_in_cur_[*it]*scale);
          Point* new_point = new Point(pos);
    
          PointFeat* ftr_cur(new PointFeat(frame_cur.get(), new_point, px_cur, f_cur_[*it], 0));
          frame_cur->addFeature(ftr_cur);
          new_point->addFrameRef(ftr_cur);
    
          PointFeat* ftr_ref(new PointFeat(frame_ref_.get(), new_point, px_ref, f_ref_[*it], 0));
          frame_ref_->addFeature(ftr_ref);
          new_point->addFrameRef(ftr_ref);
        }
      }
      return SUCCESS;
    }

    从第三帧开始进入正常处理

    FrameHandlerBase::UpdateResult FrameHandlerMono::processFrame()
    {
      // Set initial pose TODO use prior
      new_frame_->T_f_w_ = last_frame_->T_f_w_;

      // sparse image align
      SVO_START_TIMER("sparse_img_align");
      bool display = false;
      bool verbose = false;
      SparseImgAlign img_align(Config::kltMaxLevel(), Config::kltMinLevel(),
                               30, SparseImgAlign::GaussNewton, display, verbose);
      size_t img_align_n_tracked = img_align.run(last_frame_, new_frame_);
      SVO_STOP_TIMER("sparse_img_align");
      SVO_LOG(img_align_n_tracked);
      SVO_DEBUG_STREAM("Img Align: Tracked = " << img_align_n_tracked);

      // show reference features
      cv::cvtColor(last_frame_->img(), FrameHandlerMono::debug_img, cv::COLOR_GRAY2BGR);
      {
        // draw point features
        {
          auto fts = last_frame_->pt_fts_;
          Patch patch( 4, debug_img );
          for(auto it=fts.begin(); it!=fts.end(); ++it)
          {
            patch.setPosition((*it)->px);
            patch.setRoi();
            cv::rectangle(debug_img,patch.rect,cv::Scalar(0,255,0));
          }
        }
        // draw segment features
        {
          auto fts = last_frame_->seg_fts_;
          std::for_each(fts.begin(), fts.end(), [&](plsvo::LineFeat* i){
              if( i->feat3D != NULL )
                cv::line(debug_img,cv::Point2f(i->spx[0],i->spx[1]),cv::Point2f(i->epx[0],i->epx[1]),cv::Scalar(0,255,0));
          });
        }
        //cv::imshow("cv: Ref image", debug_img);
        //cv::waitKey(30);
      }

    稀疏图像对齐

    sparse_img_align.cpp/h 提供稀疏图像对齐函数

  • 相关阅读:
    2019.2.18接口
    第一阶段复习
    vue-cli使用介绍
    Webpack 入门教程
    js报错Uncaught TypeError: Cannot read property 'getElementsByTagName' of null
    用shell编程.编写一个程序,用循环创建多个目录 并在该目录下创建多个文件 在文件中写入内容:
    explorer.exe应用程序错误,怎么解决?
    [Java连接MySQL数据库——含详细步骤和代码](https://www.cnblogs.com/town123/p/8336244.html)
    墨刀的简单使用
    laravel报错:SQLSTATE[23000]: Integrity constraint violation: 1062 Duplicate entry '0' for key 'PRIMARY...
  • 原文地址:https://www.cnblogs.com/feifanrensheng/p/10502073.html
Copyright © 2011-2022 走看看