zoukankan      html  css  js  c++  java
  • leetcode -- Jump Game II

    Given an array of non-negative integers, you are initially positioned at the first index of the array.

    Each element in the array represents your maximum jump length at that position.

    Your goal is to reach the last index in the minimum number of jumps.

    For example:
    Given array A = [2,3,1,1,4]

    The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)

    [解题思路]

    1.DP: let F(i) denote the minimum number of jumps, then we have F(i) = min(F(j) ) + 1 where j = 0, … i – 1 && A[j] + j >=i, this is O(N^2) approach and will get TLE by the OJ

     1 public int jump(int[] A) {
     2         // Start typing your Java solution below
     3         // DO NOT write main() function
     4         int len = A.length;
     5         if(len <= 1){
     6             return 0;
     7         }
     8         int[] f = new int[len];
     9         for(int i = 0; i < len; i++){
    10             f[i] = Integer.MAX_VALUE;
    11         }
    12         f[0] = 0;
    13         for(int i = 1; i < len; i++){
    14             for(int j = 0; j < i; j++){
    15                 if(A[j] + j >= i){
    16                     f[i] = Math.min(f[i], f[j] + 1);
    17                 }
    18             }
    19         }
    20         return f[len - 1];
    21     }

     2.Greedy

    have bugs, the problem in the code: do not understand or realize when we need to do hops++!!!

    That is to say: i did not find the way to solove this question

     1 public int jump(int[] A) {
     2         // Start typing your Java solution below
     3         // DO NOT write main() function
     4         int len = A.length;
     5         if(len <= 1){
     6             return 0;
     7         }
     8         
     9         int maxDis = A[0] + 0;
    10         int hops = 0;
    11         if(maxDis >= len - 1){
    12             return hops + 1;
    13         }
    14         int i = maxDis;
    15         for(; i < len; i++){
    16             if(A[i] + i > maxDis){
    17                 maxDis = A[i] + i;
    18                 hops += 1;
    19                 i = maxDis;
    20             }
    21             if(maxDis >= len - 1){
    22                 break;
    23             }
    24         }
    25         
    26         if(i == len - 1){
    27             return hops;
    28         } else{
    29             return hops + 1;
    30         }
    31     }

     updated 20130910

    inspired by the discussion in leetcode and http://tech-wonderland.net/blog/leetcode-jump-game-ii.html

    the keypoint of solving the problem by greedy approach is that we should keep the current maxium reachable distance, the next maxium reachable distance and also the steps needed to do it.

    when the index exceed the current maxium reachable distance, then we need to update it by the next maxium reachable distance and increase the steps by steps ++,

    because when the index exceed the current maxium reachable distance, it means that we are stuck in current maxium reachable distance, we need to jump to increase the next maxium distance.

     1 public int jump(int[] A) {
     2         // Start typing your Java solution below
     3         // DO NOT write main() function
     4         if(A == null){
     5             return 0;
     6         }
     7         int len = A.length;
     8         if(len == 0 || len == 1){
     9             return 0;
    10         }
    11         
    12         int cur = 0;
    13         int next = 0;
    14         int ret = 0;
    15         
    16         for(int i = 0; i < len; i++){
    17             if(i > cur){
    18                 cur = next;
    19                 ret++;
    20             }
    21             next = Math.max(next, i + A[i]);
    22         }
    23         return ret;
    24     }
  • 相关阅读:
    【一些思路】web和app测试的区别
    【Python】I/O和比赛的其他一些问题
    【Python】迭代器和生成器的个人理解,再讲一讲协程
    【TCP/IP】如果打不开一个网页,需要如何处理?
    DOM事件
    GASP动画的基本使用
    Velocity的使用方法
    Swiper和Swiper Animate使用方法
    DOM操作
    JavaScript函数
  • 原文地址:https://www.cnblogs.com/feiling/p/3305483.html
Copyright © 2011-2022 走看看