zoukankan      html  css  js  c++  java
  • leetcode -- Jump Game II

    Given an array of non-negative integers, you are initially positioned at the first index of the array.

    Each element in the array represents your maximum jump length at that position.

    Your goal is to reach the last index in the minimum number of jumps.

    For example:
    Given array A = [2,3,1,1,4]

    The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)

    [解题思路]

    1.DP: let F(i) denote the minimum number of jumps, then we have F(i) = min(F(j) ) + 1 where j = 0, … i – 1 && A[j] + j >=i, this is O(N^2) approach and will get TLE by the OJ

     1 public int jump(int[] A) {
     2         // Start typing your Java solution below
     3         // DO NOT write main() function
     4         int len = A.length;
     5         if(len <= 1){
     6             return 0;
     7         }
     8         int[] f = new int[len];
     9         for(int i = 0; i < len; i++){
    10             f[i] = Integer.MAX_VALUE;
    11         }
    12         f[0] = 0;
    13         for(int i = 1; i < len; i++){
    14             for(int j = 0; j < i; j++){
    15                 if(A[j] + j >= i){
    16                     f[i] = Math.min(f[i], f[j] + 1);
    17                 }
    18             }
    19         }
    20         return f[len - 1];
    21     }

     2.Greedy

    have bugs, the problem in the code: do not understand or realize when we need to do hops++!!!

    That is to say: i did not find the way to solove this question

     1 public int jump(int[] A) {
     2         // Start typing your Java solution below
     3         // DO NOT write main() function
     4         int len = A.length;
     5         if(len <= 1){
     6             return 0;
     7         }
     8         
     9         int maxDis = A[0] + 0;
    10         int hops = 0;
    11         if(maxDis >= len - 1){
    12             return hops + 1;
    13         }
    14         int i = maxDis;
    15         for(; i < len; i++){
    16             if(A[i] + i > maxDis){
    17                 maxDis = A[i] + i;
    18                 hops += 1;
    19                 i = maxDis;
    20             }
    21             if(maxDis >= len - 1){
    22                 break;
    23             }
    24         }
    25         
    26         if(i == len - 1){
    27             return hops;
    28         } else{
    29             return hops + 1;
    30         }
    31     }

     updated 20130910

    inspired by the discussion in leetcode and http://tech-wonderland.net/blog/leetcode-jump-game-ii.html

    the keypoint of solving the problem by greedy approach is that we should keep the current maxium reachable distance, the next maxium reachable distance and also the steps needed to do it.

    when the index exceed the current maxium reachable distance, then we need to update it by the next maxium reachable distance and increase the steps by steps ++,

    because when the index exceed the current maxium reachable distance, it means that we are stuck in current maxium reachable distance, we need to jump to increase the next maxium distance.

     1 public int jump(int[] A) {
     2         // Start typing your Java solution below
     3         // DO NOT write main() function
     4         if(A == null){
     5             return 0;
     6         }
     7         int len = A.length;
     8         if(len == 0 || len == 1){
     9             return 0;
    10         }
    11         
    12         int cur = 0;
    13         int next = 0;
    14         int ret = 0;
    15         
    16         for(int i = 0; i < len; i++){
    17             if(i > cur){
    18                 cur = next;
    19                 ret++;
    20             }
    21             next = Math.max(next, i + A[i]);
    22         }
    23         return ret;
    24     }
  • 相关阅读:
    AspDotNetStorefront客户化开始
    "超时时间已到。在操作完成之前超时时间已过或服务器未响应。"另一个原因
    转:只打开一个窗口和关闭窗口而不出现提示
    .net 数据格式设置
    SQLServer导出数据表中数据的存储过程
    游标、临时表、嵌套游标使用一列
    转:将图片转换成16进制的代码写入文本
    根据文件后缀返回Http的ContentType类型的函数
    正确配置p6spy后没有日志输出的一个可能的原因
    C99 声明 + 表达式 + 词法 部分Grammar
  • 原文地址:https://www.cnblogs.com/feiling/p/3305483.html
Copyright © 2011-2022 走看看