zoukankan      html  css  js  c++  java
  • Yarn架构设计详解

    1.Yarn基本服务组件

    Yarn是一种新的 Hadoop资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。


     

    * ResourceManager(RM):负责对各NM上的资源进行统一管理和调度。将AM分配空闲的Container运行并监控其运行状态。对AM申请的资源请求分配相应的空闲Container。主要由两个组件构成:调度器和应用程序管理器。 

    * 调度器(Scheduler):调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位是Container,从而限定每个任务使用的资源量。Shceduler不负责监控或者跟踪应用程序的状态,也不负责任务因为各种原因而需要的重启(由ApplicationMaster负责)。总之,调度器根据应用程序的资源要求,以及集群机器的资源情况,为应用程序分配封装在Container中的资源。 

    调度器是可插拔的,例如CapacityScheduler、FairScheduler。 

    * 应用程序管理器(Applications Manager):应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动AM、监控AM运行状态并在失败时重新启动等,跟踪分给的Container的进度、状态也是其职责。 

    * NodeManager(NM):NM是每个节点上的资源和任务管理器。它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;同时会接收并处理来自AM的Container 启动/停止等请求。 

    * ApplicationMaster(AM):用户提交的应用程序均包含一个AM,负责应用的监控,跟踪应用执行状态,重启失败任务等。ApplicationMaster是应用框架,它负责向ResourceManager协调资源,并且与NodeManager协同工作完成Task的执行和监控。MapReduce就是原生支持的一种框架,可以在YARN上运行Mapreduce作业。有很多分布式应用都开发了对应的应用程序框架,用于在YARN上运行任务,例如Spark,Storm等。如果需要,我们也可以自己写一个符合规范的YARN application。 

    * Container:是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container 表示的。YARN会为每个任务分配一个Container且该任务只能使用该Container中描述的资源。

    2.Yarn的资源管理

    1.资源调度和隔离是yarn作为一个资源管理系统,最重要且最基础的两个功能。资源调度由resourcemanager完成,而资源隔离由各个nodemanager实现。 

    2.Resourcemanager将某个nodemanager上资源分配给任务(这就是所谓的“资源调度”)后,nodemanager需按照要求为任务提供相应的资源,甚至保证这些资源应具有独占性,为任务运行提供基础和保证,这就是所谓的资源隔离。 

    3.当谈及到资源时,我们通常指内存、cpu、io三种资源。Hadoop yarn目前为止仅支持cpu和内存两种资源管理和调度。 

    4.内存资源多少决定任务的生死,如果内存不够,任务可能运行失败;相比之下,cpu资源则不同,它只会决定任务的快慢,不会对任务的生死产生影响。

    相关参数: 

    memory参数:

    1.yarn.nodemanager.resource.memory-mb 

    表示该节点上yarn可以使用的物理内存总量,默认是8192m,注意,如果你的节点内存资源不够8g,则需要调减这个值,yarn不会智能的探测节点物理内存总量 可调节为本地内存的80%

    2.yarn.nodemanager.vmem-pmem-ratio 

    任务使用1m物理内存最多可以使用虚拟内存量,默认是2.1

    3.yarn.nodemanager.pmem-check-enabled 

    是否启用一个线程检查每个任务证使用的物理内存量,如果任务超出了分配值,则直接将其kill,默认是true。

    4.yarn.nodemanager.vmem-check-enabled 

    是否启用一个线程检查每个任务证使用的虚拟内存量,如果任务超出了分配值,则直接将其kill,默认是true。

    5.yarn.scheduler.minimum-allocation-mb 

    单个任务可以使用最小物理内存量,默认1024m,如果一个任务申请物理内存量少于该值,则该对应值改为这个数。

    6.yarn.scheduler.maximum-allocation-mb 

    单个任务可以申请的最多的内存量,默认8192m

    CPU参数:

    1.yarn.nodemanager.resource.cpu-vcores 

    表示该节点上yarn可使用的虚拟cpu个数,默认是8个,注意,目前推荐将该值为与物理cpu核数相同。如果你的节点cpu合数不够8个,则需要调减小这个值,而yarn不会智能的探测节点物理cpu总数。

    2.yarn.scheduler.minimum-allocation-vcores 

    单个任务可申请最小cpu个数,默认1,如果一个任务申请的cpu个数少于该数,则该对应值被修改为这个数

    3.yarn.scheduler.maximum-allocation-vcores 

    单个任务可以申请最多虚拟cpu个数,默认是32.

    想学习大数据或者对大数据技术感兴趣的朋友,这里我整理了一套大数据的学习视频免费分享给大家,从入门到实战都有,大家可以加我的微信:Lxiao_28获取!(备注领取资料)。也欢迎进微信群交流,或者获取Java高级技术学习资料。

  • 相关阅读:
    CodeForces 219D Choosing Capital for Treeland (树形DP)
    POJ 3162 Walking Race (树的直径,单调队列)
    POJ 2152 Fire (树形DP,经典)
    POJ 1741 Tree (树的分治,树的重心)
    POJ 1655 Balancing Act (树的重心,常规)
    HDU 2196 Computer (树形DP)
    HDU 1520 Anniversary party (树形DP,入门)
    寒门子弟
    JQuery选择器(转)
    (四)Web应用开发---系统架构图
  • 原文地址:https://www.cnblogs.com/feiyudemeng/p/9118861.html
Copyright © 2011-2022 走看看