###without sesesion_id
with ash as (select /*+ materialize*/* from DBA_HIST_ACTIVE_SESS_HISTORY where sample_time between timestamp '2015-03-18 15:00:00' and timestamp
'2015-03-18 15:01:00'),
chains as (
select session_id, level lvl,
sys_connect_by_path(sql_id,
' -> ') path,
connect_by_isleaf
isleaf
from ash
start with event = 'row
cache lock'
connect by nocycle (prior blocking_session
= session_id and prior blocking_session_serial# = session_serial#
and prior sample_id = sample_id))
select lpad(round(ratio_to_report(count(*)) over () * 100)||'%',5,' ')
"%This",
count(*) samples,
path
from chains
where isleaf = 1
group by path
order by samples
##with session_id
with ash as
(select /*+ materialize*/
*
from v$active_session_history t
where sample_time >=
to_date('2019-07-10 20:30:00', 'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_date('2019-07-10 21:11:00', 'yyyy-mm-dd hh24:mi:ss')),
chains as
(
select session_id,
level lvl,
sys_connect_by_path(session_id || ' ' || sql_id || ' ' || event,
' -> ') path,
connect_by_isleaf isleaf
from ash
start with event in ('enq: TX - row lock contention')
connect by nocycle(prior blocking_session = session_id
and prior blocking_session_serial# = session_serial#
and prior sample_id = sample_id))
select lpad(round(ratio_to_report(count(*)) over() * 100) || '%', 5, ' ') "%This",
count(*) samples,
path
from chains
where isleaf = 1
group by path
order by samples desc;
#######sample 1 :
我们碰到一个问题,一个库在一天跑批时间段,短暂的10分钟出现挂起,等待事件为log file switch (checkpoint incomplete), enq: US - contention,enq: TA - contention
10分钟后,自动恢复了。
step 1:##view 问题时间点 session 连接数
select /*+ parallel 8 */
dbid, instance_number, sample_id, sample_time, count(*) session_count
from m_ash_2020 t
group by dbid, instance_number, sample_id, sample_time
order by dbid, instance_number, sample_time;
看上去等待事件从 12:13 开始增加
52 883975308 1 258303587 21-MAY-20 12.13.40.357 AM 103
53 883975308 1 258303597 21-MAY-20 12.13.50.394 AM 121
174 883975308 2 257867989 21-MAY-20 12.14.08.789 AM 110
175 883975308 2 257867999 21-MAY-20 12.14.18.841 AM 124
step 2: view 等待事件,看上去等待事件 从 12月13日 13:00 ~ 15:00数据 ,等待事件为log file switch (checkpoint incomplete), enq: US - contention,enq: TA - contention
24 883975308 258303647 21-MAY-20 12.14.40.705 AM 1 enq: US - contention WAITING 51
select t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.event,
t.session_state,
t.c session_count
from (select t.*,
rank() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select /*+ parallel 8 */
t.*,
count(*) over(partition by dbid, instance_number, sample_time, event) c,
row_number() over(partition by dbid, instance_number, sample_time, event order by 1) r1
from m_ash_2020 t
where sample_time >
to_timestamp('2020-05-21 00:13:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2020-05-21 00:15:00',
'yyyy-mm-dd hh24:mi:ss')
) t
where r1 = 1) t
where r < 3
order by dbid, instance_number, sample_time, r;
看上去
156 883975308 258303647 21-MAY-20 12.14.40.705 AM 1 enq: US - contention WAITING 51
157 883975308 258303657 21-MAY-20 12.14.50.761 AM 1 log file switch (checkpoint incomplete) WAITING 93
####
看上去是有长事务触发了这个问题。但是我们不知道哪个长事务触发了这个内部等待。
How to correct performance issues with enq: US - contention related to undo segments (Doc ID 1332738.1) To BottomTo Bottom
The wait event "enq: US Contention" is associated with contention on the latch in the row cache (dc_rollback_seg). Enqueue US - Contention can become a bottle-neck for performance if workload dictates that a lot of offlined undo segments must be onlined over a short period of time. The latch on the row cache can be unable to keep up with the workload.
This can happen for a number of reasons and some scenarios are legitimate workload demands.
Solution: ensure that peaks in onlined undo segments do not happen (see workaround #2). That is not always feasible.
Workarounds:
Bounce the instance.
Setting _ROLLBACK_SEGMENT_COUNT to a high number to keep undo segments online:
ALTER SYSTEM SET "_rollback_segment_count"=<n>;
Note: In databases with high query activity, particularly parallel query and a high setting for _ROLLBACK_SEGMENT_COUNT, you can expect to see wait contention on the row cache for DC_ROLLBACK_SEGS. It is highly recommended in these environments where setting _ROLLBACK_SEGMENT_COUNT to a high value (10s of thousands and higher) apply the patch for Bug:14226599. This will increase the hash buckets on the DC_ROLLBACK_SEGS row cache to help alleviate latch contention.
Set _UNDO_AUTOTUNE to FALSE:
ALTER SYSTEM SET "_undo_autotune" = false;
Note: Simply using _SMU_DEBUG_MODE=33554432 may not be enough to stop the problem, but valid fix for Bug:5387030.
A fix to Bug:7291739 is to set a new hidden parameter, _HIGHTHRESHOLD_UNDORETENTION to set a high threshold for undo retention completely distinct from maxquerylen:
ALTER SYSTEM SET "_highthreshold_undoretention"=<n>;
#####step3:
造成的结果就是inset 语句一直在等待。
INSERT INTO CBSD_TRAN_LOG (SEQ_NO, TRAN_DATE, SOURCE_TYPE, STATUS, CHANNEL_DATE, MSG_CODE, MSG_TYPE, TRAN_TYPE, BRANCH, USER_ID, PROGRAM_ID, ORG_SYS_ID, BUSS_SEQ_NO, CONSUMER_ID, IN_DATE_TIME, OUT_DATE_TIME, RET_CODE, RET_MSG, LOG_FLAG, IN_OUT_FLAG, HOST_NAME, HOST_IP, FINANCIAL_TYPE, PTA_CODE ) VALUES (:B19 , :B18 , :B17 , 'P', :B16 , :B15 , :B14 , :B13 , :B12 , :B11 , :B10 , :B9 , :B8 , :B7 , SYSTIMESTAMP, NULL, NULL, NULL, :B6 , :B5 , :B4 , :B3 , :B2 , :B1 ) RETURNING ROWID INTO :O0
##继续寻找长事务
通过AWR 找到 问题时间段
begin samp: 21-5月 -20 00:00:12 (135418),
End Snap: 21-5月 -20 00:30:08 (135420)
套用如下SQL 检查:
select ss.snap_id, ss.instance_number node, begin_interval_time, sql_id, plan_hash_value,
nvl(executions_delta,0) execs,
(elapsed_time_delta/decode(nvl(executions_delta,0),0,1,executions_delta))/1000000 avg_etime,
(buffer_gets_delta/decode(nvl(buffer_gets_delta,0),0,1,executions_delta)) avg_lio
from DBA_HIST_SQLSTAT S, DBA_HIST_SNAPSHOT SS
where ss.snap_id = S.snap_id
and ss.snap_id between 135418 and 135420
and ss.instance_number = S.instance_number
and executions_delta > 0
order by 1, 2, 3
260 135419 1 21-MAY-20 12.00.12.307 AM 8vyjutx6hg3wh 508202633 70 185.805728857143 5.52857142857143
244 135419 1 21-MAY-20 12.00.12.307 AM a6xpm6yf5v853 0 1 634.598866 5756056
307 135419 1 21-MAY-20 12.00.12.307 AM 1c86ws6hvf851 0 1 637.564491 4807707
229 135419 1 21-MAY-20 12.00.12.307 AM buc2qbhrq5cww 0 13 644.167239307692 9371341.84615385
271 135419 1 21-MAY-20 12.00.12.307 AM 7cpchd19ucx24 0 1 696.898091 8470013
277 135419 1 21-MAY-20 12.00.12.307 AM 5vm94ytq5m1s6 0 1 703.738812 8250391
-》以下SQL 平均时间都在600S 以外: 这些值的plan hash value 都是0.
buc2qbhrq5cww:
begin RB_INT_ACCR.PROCESS_ACCOUNTS('ACCR');end;
7cpchd19ucx24:
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate; broken BOOLEAN := FALSE; BEGIN BATCH_SPLIT.SPLITTED_PROC(2310964); :mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0; END IF; END;
5vm94ytq5m1s6:
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate; broken BOOLEAN := FALSE; BEGIN BATCH_SPLIT.SPLITTED_PROC(2310958); :mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0; END IF; END;
a6xpm6yf5v853:
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate; broken BOOLEAN := FALSE; BEGIN BATCH_SPLIT.SPLITTED_PROC(2310980); :mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0; END IF; END;
1c86ws6hvf851:
DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate; broken BOOLEAN := FALSE; BEGIN cd_endofday_pkg.cd_eodrun; :mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0; END IF; END;
->以下SQL高度值得怀疑 ,PLAH HASH VALUE 不为0
260 135419 1 21-MAY-20 12.00.12.307 AM 8vyjutx6hg3wh 508202633 70 185.805728857143 5.52857142857143
sql_id:8vyjutx6hg3wh
update /*+ rule */ undo$ set name=:2, file#=:3, block#=:4, status$=:5, user#=:6, undosqn=:7, xactsqn=:8, scnbas=:9, scnwrp=:10, inst#=:11, ts#=:12, spare1=:13 where us#=:1
-》 以下SQL
#对比一下AWR 报告的正常时间段的效率。
select ss.snap_id, ss.instance_number node, begin_interval_time, sql_id, plan_hash_value,
nvl(executions_delta,0) execs,
(elapsed_time_delta/decode(nvl(executions_delta,0),0,1,executions_delta))/1000000 avg_etime,
(buffer_gets_delta/decode(nvl(buffer_gets_delta,0),0,1,executions_delta)) avg_lio
from DBA_HIST_SQLSTAT S, DBA_HIST_SNAPSHOT SS
where ss.snap_id = S.snap_id
and ss.snap_id between 134746 and 134748
and ss.instance_number = S.instance_number
and executions_delta > 0
order by 1, 2, 3
-》
-综合来看:
问题触发了一个未知的bug .
Re-visited the logs once again and found that there is known document for this issue. Please follow the solution suggested in the below document -
Alert Log Shows 'ORA-12751: cpu time or run time policy violation' and Associated MMON Trace Shows 'KEBM: MMON action policy violation. 'Block Cleanout Optim, Undo Segment Scan' viol=1; err=12751' ( Doc ID 1671412.1 )
//
----- START DDE Action: 'ORA_12751_DUMP' (Sync) -----
Runtime exceeded 300 seconds
Time limit violation detected at:
ksedsts()+240<-kspol_12751_dump()+140<-dbgdaExecuteAction()+808<-dbgerRunAction()+108<-dbgerRunActions()+2976<-dbgexPhaseII()+1468<-dbgexProcessError()+1556<-dbgeExecuteForError()+72<-dbgePostErrorKGE()+2044<-dbkePostKGE_kgsf()+68<-kgeade()+364<-kgeselv()+96
<-ksesecl0()+80<-kqrigt()+3156<-kqrLockAndPinPo()+572<-kqrpre1()+944<-kqrpre()+28<-ktucloUsegScan()+3580<-ksb_run_managed_action()+2872<-ksbcti()+4044<-ksbabs()+796<-kebm_mmon_main()+428<-ksbrdp()+2216<-opirip()+1620<-opidrv()+608<-sou2o()+136<-opimai_real()+188
<-ssthrdmain()+276<-main()+204<-__start()+112Current Wait Stack:
.........................................
----- END DDE Action: 'ORA_12751_DUMP' (SUCCESS, 0 csec) -----
----- END DDE Actions Dump (total 0 csec) -----
KEBM: MMON action policy violation. 'Block Cleanout Optim, Undo Segment Scan' viol=1; err=12751
//
workaroud:
规避方法如下:
SQL> alter system set "_smu_debug_mode"=134217728 scope=both;
###
感谢
By Tony Pan-Oracle on 四月 16, 2015
如何通过dba_hist_active_sess_history分析历史数据库性能问题
背景
在很多情况下,当数据库发生性能问题的时候,我们并没有机会来收集足够的诊断信息,比如system state dump或者hang analyze,甚至问题发生的时候DBA根本不在场。这给我们诊断问题带来很大的困难。那么在这种情况下,我们是否能在事后收集一些信息来分析问题的原因呢?在Oracle 10G或者更高版本上,答案是肯定的。本文我们将介绍一种通过dba_hist_active_sess_history的数据来分析问题的一种方法。
适用于
Oracle 10G或更高版本,本文适用于任何平台。
详情
在Oracle 10G中,我们引入了AWR和ASH采样机制,有一个视图gv$active_session_history会每秒钟将数据库所有节点的Active Session采样一次,而dba_hist_active_sess_history则会将gv$active_session_history里的数据每10秒采样一次并持久化保存。基于这个特征,我们可以通过分析dba_hist_active_sess_history的Session采样情况,来定位问题发生的准确时间范围,并且可以观察每个采样点的top event和top holder。下面通过一个例子来详细说明。
1. Dump出问题期间的ASH数据:
为了不影响生产系统,我们可以将问题大概期间的ASH数据export出来在测试机上分析。
基于dba_hist_active_sess_history创建一个新表m_ash,然后将其通过exp/imp导入到测试机。在发生问题的数据库上执行exp:
SQL> conn user/passwd
SQL> create table m_ash as select * from dba_hist_active_sess_history where SAMPLE_TIME between TO_TIMESTAMP ('<time_begin>', 'YYYY-MM-DD HH24:MI:SS') and TO_TIMESTAMP ('<time_end>', 'YYYY-MM-DD HH24:MI:SS');
$ exp user/passwd file=m_ash.dmp tables=(m_ash) log=m_ash.exp.log
然后导入到测试机:
$ imp user/passwd file=m_ash.dmp log=m_ash.imp.log
2. 验证导出的ASH时间范围:
为了加快速度,我们采用了并行查询。另外建议采用Oracle SQL Developer来查询以防止输出结果折行不便于观察。
set line 200 pages 1000
col sample_time for a25
col event for a40
alter session set nls_timestamp_format='yyyy-mm-dd hh24:mi:ss.ff';
select /*+ parallel 8 */
t.dbid, t.instance_number, min(sample_time), max(sample_time), count(*) session_count
from m_ash t
group by t.dbid, t.instance_number
order by dbid, instance_number;
INSTANCE_NUMBER MIN(SAMPLE_TIME) MAX(SAMPLE_TIME) SESSION_COUNT
1 2015-03-26 21:00:04.278 2015-03-26 22:59:48.387 2171
2 2015-03-26 21:02:12.047 2015-03-26 22:59:42.584 36
从以上输出可知该数据库共2个节点,采样时间共2小时,节点1的采样比节点2要多很多,问题可能发生在节点1上。
3. 确认问题发生的精确时间范围:
参考如下脚本:
select /*+ parallel 8 */
dbid, instance_number, sample_id, sample_time, count(*) session_count
from m_ash t
group by dbid, instance_number, sample_id, sample_time
order by dbid, instance_number, sample_time;
INSTANCE_NUMBER SAMPLE_ID SAMPLE_TIME SESSION_COUNT
1 36402900 2015-03-26 22:02:50.985 4
1 36402910 2015-03-26 22:03:01.095 1
1 36402920 2015-03-26 22:03:11.195 1
1 36402930 2015-03-26 22:03:21.966 21
1 36402940 2015-03-26 22:03:32.116 102
1 36402950 2015-03-26 22:03:42.226 181
1 36402960 2015-03-26 22:03:52.326 200
1 36402970 2015-03-26 22:04:02.446 227
1 36402980 2015-03-26 22:04:12.566 242
1 36402990 2015-03-26 22:04:22.666 259
1 36403000 2015-03-26 22:04:32.846 289
1 36403010 2015-03-26 22:04:42.966 147
1 36403020 2015-03-26 22:04:53.076 2
1 36403030 2015-03-26 22:05:03.186 4
1 36403040 2015-03-26 22:05:13.296 1
1 36403050 2015-03-26 22:05:23.398 1
注意观察以上输出的每个采样点的active session的数量,数量突然变多往往意味着问题发生了。从以上输出可以确定问题发生的精确时间在2015-03-26 22:03:21 ~ 22:04:42,问题持续了大约1.5分钟。
注意: 观察以上的输出有无断档,比如某些时间没有采样。
4. 确定每个采样点的top n event:
在这里我们指定的是top 2 event,并且注掉了采样时间以观察所有采样点的情况。如果数据量较多,您也可以通过开启sample_time的注释来观察某个时间段的情况。注意最后一列session_count指的是该采样点上的等待该event的session数量。
select t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.event,
t.session_state,
t.c session_count
from (select t.*,
rank() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select /*+ parallel 8 */
t.*,
count(*) over(partition by dbid, instance_number, sample_time, event) c,
row_number() over(partition by dbid, instance_number, sample_time, event order by 1) r1
from m_ash t
/*where sample_time >
to_timestamp('2013-11-17 13:59:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2013-11-17 14:10:00',
'yyyy-mm-dd hh24:mi:ss')*/
) t
where r1 = 1) t
where r < 3
order by dbid, instance_number, sample_time, r;
SAMPLE_ID SAMPLE_TIME INSTANCE_NUMBER EVENT SESSION_STATE SESSION_COUNT
36402900 22:02:50.985 1 ON CPU 3
36402900 22:02:50.985 1 db file sequential read WAITING 1
36402910 22:03:01.095 1 ON CPU 1
36402920 22:03:11.195 1 db file parallel read WAITING 1
36402930 22:03:21.966 1 cursor: pin S wait on X WAITING 11
36402930 22:03:21.966 1 latch: shared pool WAITING 4
36402940 22:03:32.116 1 cursor: pin S wait on X WAITING 83
36402940 22:03:32.116 1 SGA: allocation forcing component growth WAITING 16
36402950 22:03:42.226 1 cursor: pin S wait on X WAITING 161
36402950 22:03:42.226 1 SGA: allocation forcing component growth WAITING 17
36402960 22:03:52.326 1 cursor: pin S wait on X WAITING 177
36402960 22:03:52.326 1 SGA: allocation forcing component growth WAITING 20
36402970 22:04:02.446 1 cursor: pin S wait on X WAITING 204
36402970 22:04:02.446 1 SGA: allocation forcing component growth WAITING 20
36402980 22:04:12.566 1 cursor: pin S wait on X WAITING 219
36402980 22:04:12.566 1 SGA: allocation forcing component growth WAITING 20
36402990 22:04:22.666 1 cursor: pin S wait on X WAITING 236
36402990 22:04:22.666 1 SGA: allocation forcing component growth WAITING 20
36403000 22:04:32.846 1 cursor: pin S wait on X WAITING 265
36403000 22:04:32.846 1 SGA: allocation forcing component growth WAITING 20
36403010 22:04:42.966 1 enq: US - contention WAITING 69
36403010 22:04:42.966 1 latch: row cache objects WAITING 56
36403020 22:04:53.076 1 db file scattered read WAITING 1
36403020 22:04:53.076 1 db file sequential read WAITING 1
从以上输出我们可以发现问题期间最严重的等待为cursor: pin S wait on X,高峰期等待该event的session数达到了265个,其次为SGA: allocation forcing component growth,高峰期session为20个。
注意:
1) 再次确认以上输出有无断档,是否有某些时间没有采样。
2) 注意那些session_state为ON CPU的输出,比较ON CPU的进程个数与您的OS物理CPU的个数,如果接近或者超过物理CPU个数,那么您还需要检查OS当时的CPU资源状况,比如OSWatcher/NMON等工具,高的CPU Run Queue可能引发该问题,当然也可能是问题的结果,需要结合OSWatcher和ASH的时间顺序来验证。
5. 观察每个采样点的等待链:
其原理为通过dba_hist_active_sess_history. blocking_session记录的holder来通过connect by级联查询,找出最终的holder. 在RAC环境中,每个节点的ASH采样的时间很多情况下并不是一致的,因此您可以通过将本SQL的第二段注释的sample_time稍作修改让不同节点相差1秒的采样时间可以比较(注意最好也将partition by中的sample_time做相应修改)。该输出中isleaf=1的都是最终holder,而iscycle=1的代表死锁了(也就是在同一个采样点中a等b,b等c,而c又等a,这种情况如果持续发生,那么尤其值得关注)。采用如下查询能观察到阻塞链。
select /*+ parallel 8 */
level lv,
connect_by_isleaf isleaf,
connect_by_iscycle iscycle,
t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.session_id,
t.sql_id,
t.session_type,
t.event,
t.session_state,
t.blocking_inst_id,
t.blocking_session,
t.blocking_session_status
from m_ash t
/*where sample_time >
to_timestamp('2013-11-17 13:55:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2013-11-17 14:10:00',
'yyyy-mm-dd hh24:mi:ss')*/
start with blocking_session is not null
connect by nocycle
prior dbid = dbid
and prior sample_time = sample_time
/*and ((prior sample_time) - sample_time between interval '-1'
second and interval '1' second)*/
and prior blocking_inst_id = instance_number
and prior blocking_session = session_id
and prior blocking_session_serial# = session_serial#;
LV ISLEAF ISCYCLE SAMPLE_TIME INSTANCE_NUMBER SESSION_ID SQL_ID EVENT SESSION_STATE BLOCKING_INST_ID BLOCKING_SESSION BLOCKING_SESSION_STATUS
1 0 0 22:04:32.846 1 1259 3ajt2htrmb83y cursor: WAITING 1 537 VALID
2 1 0 22:04:32.846 1 537 3ajt2htrmb83y SGA: WAITING UNKNOWN
注意为了输出便于阅读,我们将等待event做了简写,下同。从上面的输出可见,在相同的采样点上(22:04:32.846),节点1 session 1259在等待cursor: pin S wait on X,其被节点1 session 537阻塞,而节点1 session 537又在等待SGA: allocation forcing component growth,并且ASH没有采集到其holder,因此这里cursor: pin S wait on X只是一个表面现象,问题的原因在于SGA: allocation forcing component growth
6. 基于第5步的原理来找出每个采样点的最终top holder:
比如如下SQL列出了每个采样点top 2的blocker session,并且计算了其最终阻塞的session数(参考blocking_session_count)
select t.lv,
t.iscycle,
t.dbid,
t.sample_id,
t.sample_time,
t.instance_number,
t.session_id,
t.sql_id,
t.session_type,
t.event,
t.seq#,
t.session_state,
t.blocking_inst_id,
t.blocking_session,
t.blocking_session_status,
t.c blocking_session_count
from (select t.*,
row_number() over(partition by dbid, instance_number, sample_time order by c desc) r
from (select t.*,
count(*) over(partition by dbid, instance_number, sample_time, session_id) c,
row_number() over(partition by dbid, instance_number, sample_time, session_id order by 1) r1
from (select /*+ parallel 8 */
level lv,
connect_by_isleaf isleaf,
connect_by_iscycle iscycle,
t.*
from m_ash t
/*where sample_time >
to_timestamp('2013-11-17 13:55:00',
'yyyy-mm-dd hh24:mi:ss')
and sample_time <
to_timestamp('2013-11-17 14:10:00',
'yyyy-mm-dd hh24:mi:ss')*/
start with blocking_session is not null
connect by nocycle
prior dbid = dbid
and prior sample_time = sample_time
/*and ((prior sample_time) - sample_time between interval '-1'
second and interval '1' second)*/
and prior blocking_inst_id = instance_number
and prior blocking_session = session_id
and prior
blocking_session_serial# = session_serial#) t
where t.isleaf = 1) t
where r1 = 1) t
where r < 3
order by dbid, sample_time, r;
SAMPLE_TIME INSTANCE_NUMBER SESSION_ID SQL_ID EVENT SEQ# SESSION_STATE BLOCKING_SESSION_STATUS BLOCKING_SESSION_COUNT
22:03:32.116 1 1136 1p4vyw2jan43d SGA: 1140 WAITING UNKNOWN 82
22:03:32.116 1 413 9g51p4bt1n7kz SGA: 7646 WAITING UNKNOWN 2
22:03:42.226 1 1136 1p4vyw2jan43d SGA: 1645 WAITING UNKNOWN 154
22:03:42.226 1 537 3ajt2htrmb83y SGA: 48412 WAITING UNKNOWN 4
22:03:52.326 1 1136 1p4vyw2jan43d SGA: 2150 WAITING UNKNOWN 165
22:03:52.326 1 537 3ajt2htrmb83y SGA: 48917 WAITING UNKNOWN 8
22:04:02.446 1 1136 1p4vyw2jan43d SGA: 2656 WAITING UNKNOWN 184
22:04:02.446 1 537 3ajt2htrmb83y SGA: 49423 WAITING UNKNOWN 10
22:04:12.566 1 1136 1p4vyw2jan43d SGA: 3162 WAITING UNKNOWN 187
22:04:12.566 1 2472 SGA: 1421 WAITING UNKNOWN 15
22:04:22.666 1 1136 1p4vyw2jan43d SGA: 3667 WAITING UNKNOWN 193
22:04:22.666 1 2472 SGA: 1926 WAITING UNKNOWN 25
22:04:32.846 1 1136 1p4vyw2jan43d SGA: 4176 WAITING UNKNOWN 196
22:04:32.846 1 2472 SGA: 2434 WAITING UNKNOWN 48
注意以上输出,比如第一行,代表在22:03:32.116,节点1的session 1136最终阻塞了82个session. 顺着时间往下看,可见节点1的session 1136是问题期间最严重的holder,它在每个采样点都阻塞了100多个session,并且它持续等待SGA: allocation forcing component growth,注意观察其seq#您会发现该event的seq#在不断变化,表明该session并未完全hang住,由于时间正好发生在夜间22:00左右,这显然是由于自动收集统计信息job导致shared memory resize造成,因此可以结合Scheduler/MMAN/MMNL的trace以及dba_hist_memory_resize_ops的输出进一步确定问题。
注意:
1) blocking_session_count 指某一个holder最终阻塞的session数,比如 a <- b<- c (a被b阻塞,b又被c阻塞),只计算c阻塞了1个session,因为中间的b可能在不同的阻塞链中发生重复。
2) 如果最终的holder没有被ash采样(一般因为该holder处于空闲),比如 a<- c 并且b<- c (a被c阻塞,并且b也被c阻塞),但是c没有采样,那么以上脚本无法将c统计到最终holder里,这可能会导致一些遗漏。
3) 注意比较blocking_session_count的数量与第3步查询的每个采样点的总session_count数,如果每个采样点的blocking_session_count数远小于总session_count数,那表明大部分session并未记载holder,因此本查询的结果并不能代表什么。
4) 在Oracle 10g中,ASH并没有blocking_inst_id列,在以上所有的脚本中,您只需要去掉该列即可。因此10g的ASH一般只能用于诊断单节点的问题。
其他关于ASH的应用
除了通过ASH数据来找holder以外,我们还能用它来获取很多信息(基于数据库版本有所不同):
比如通过PGA_ALLOCATED列来计算每个采样点的最大PGA,合计PGA以分析ora-4030/Memory Swap相关问题;
通过TEMP_SPACE_ALLOCATED列来分析临时表空间使用情况;
通过IN_PARSE/IN_HARD_PARSE/IN_SQL_EXECUTION列来分析SQL处于parse还是执行阶段;
通过CURRENT_OBJ#/CURRENT_FILE#/CURRENT_BLOCK#来确定I/O相关等待发生的对象