二叉树的深度的概念最值得注意的地方,在于 到"叶子"节点的距离。
一般来说,如果直接说“深度”,都是指最大深度,即最远叶子的距离。
这里放两道例题,最小深度和最大深度。
1. 二叉树的最小深度
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
1 /** 2 * Definition for binary tree 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 int minDepth(TreeNode *root) { 13 } 14 };
因为深度是必须到叶子节点的距离,因此使用深度遍历时,不能单纯的比较左右子树的递归结果返回较小值,因为对于有单个孩子为空的节点,为空的孩子会返回0,但这个节点并非叶子节点,故返回的结果是错误的。
因此,当发现当前处理的节点有单个孩子是空时,返回一个极大值INT_MAX,防止其干扰结果。
1 class Solution { 2 public: 3 int minDepth(TreeNode *root) { 4 if(!root) return 0; 5 if(!root -> left && !root -> right) return 1; //Leaf means should return depth. 6 int leftDepth = 1 + minDepth(root -> left); 7 leftDepth = (leftDepth == 1 ? INT_MAX : leftDepth); 8 int rightDepth = 1 + minDepth(root -> right); 9 rightDepth = (rightDepth == 1 ? INT_MAX : rightDepth); //If only one child returns 1, means this is not leaf, it does not return depth. 10 return min(leftDepth, rightDepth); 11 } 12 };
当然,这道题也能用层次遍历来做。
class Solution { struct LevNode{ TreeNode* Node; int Lev; }; public: int minDepth(TreeNode *root) { if(NULL == root) return 0; queue<LevNode> q; LevNode lnode; lnode.Node = root; lnode.Lev = 1; q.push(lnode); while(!q.empty()){ LevNode curNode = q.front(); q.pop(); if(NULL == (curNode.Node) -> left && NULL == (curNode.Node) -> right) return (curNode.Lev); if(NULL != (curNode.Node) -> left){ LevNode newNode; newNode.Node = (curNode.Node) -> left; newNode.Lev = (curNode.Lev + 1); q.push(newNode); } if(NULL != (curNode.Node) -> right){ LevNode newNode; newNode.Node = (curNode.Node) -> right; newNode.Lev = (curNode.Lev + 1); q.push(newNode); } } return 0; } };
对于这道题,LeetCode 两种解法的时间都是 48ms
2. 二叉树的最大深度
Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
最大深度也是到叶子节点的长度,但是因为是求最大深度,单个孩子为空的非叶子节点不会干扰到结果,因此用最简洁的处理方式就可以搞定。
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int maxDepth(TreeNode *root) { if(!root) return 0; int leftDepth = maxDepth(root -> left) + 1; int rightDepth = maxDepth(root -> right) + 1; return max(leftDepth, rightDepth); } };