zoukankan      html  css  js  c++  java
  • TensorFlow(十三):模型的保存与载入

    一:保存

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
    
    #每个批次100张照片
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数
    # loss = tf.reduce_mean(tf.square(y-prediction))
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    saver = tf.train.Saver()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(11):
            for batch in range(n_batch):
                batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
            
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
            print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
        #保存模型
        saver.save(sess,'net/my_net.ckpt')

    结果:

    Iter 0,Testing Accuracy 0.8252
    Iter 1,Testing Accuracy 0.8916
    Iter 2,Testing Accuracy 0.9008
    Iter 3,Testing Accuracy 0.906
    Iter 4,Testing Accuracy 0.9091
    Iter 5,Testing Accuracy 0.9104
    Iter 6,Testing Accuracy 0.911
    Iter 7,Testing Accuracy 0.9127
    Iter 8,Testing Accuracy 0.9145
    Iter 9,Testing Accuracy 0.9166
    Iter 10,Testing Accuracy 0.9177

    二:载入

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
    
    #每个批次100张照片
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数
    # loss = tf.reduce_mean(tf.square(y-prediction))
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    saver = tf.train.Saver()
    
    with tf.Session() as sess:
        sess.run(init)
        # 未载入模型时的识别率
        print('未载入识别率',sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
        saver.restore(sess,'net/my_net.ckpt')
        # 载入模型后的识别率
        print('载入后识别率',sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))

    结果:

    未载入识别率 0.098
    INFO:tensorflow:Restoring parameters from net/my_net.ckpt
    载入后识别率 0.9177
  • 相关阅读:
    JavaScript按纯数字排序
    用jQuery监听浏览器窗口的变化
    jquery-jtemplates.js模板应用
    art-template模板应用
    JavaScript判断当前手机是Android还是iOS系统
    JavaScript数组转字符串,字符串转数组
    JavaScript数字转字符串,字符串转数字
    Play framework 安装
    JQuery判断数组中是否包含某个字符串
    js获取页面宽度高度及屏幕分辨率
  • 原文地址:https://www.cnblogs.com/felixwang2/p/9190692.html
Copyright © 2011-2022 走看看