zoukankan      html  css  js  c++  java
  • TensorFlow(十三):模型的保存与载入

    一:保存

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
    
    #每个批次100张照片
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数
    # loss = tf.reduce_mean(tf.square(y-prediction))
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    saver = tf.train.Saver()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(11):
            for batch in range(n_batch):
                batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
            
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
            print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
        #保存模型
        saver.save(sess,'net/my_net.ckpt')

    结果:

    Iter 0,Testing Accuracy 0.8252
    Iter 1,Testing Accuracy 0.8916
    Iter 2,Testing Accuracy 0.9008
    Iter 3,Testing Accuracy 0.906
    Iter 4,Testing Accuracy 0.9091
    Iter 5,Testing Accuracy 0.9104
    Iter 6,Testing Accuracy 0.911
    Iter 7,Testing Accuracy 0.9127
    Iter 8,Testing Accuracy 0.9145
    Iter 9,Testing Accuracy 0.9166
    Iter 10,Testing Accuracy 0.9177

    二:载入

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
    
    #每个批次100张照片
    batch_size = 100
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #创建一个简单的神经网络,输入层784个神经元,输出层10个神经元
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数
    # loss = tf.reduce_mean(tf.square(y-prediction))
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    saver = tf.train.Saver()
    
    with tf.Session() as sess:
        sess.run(init)
        # 未载入模型时的识别率
        print('未载入识别率',sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))
        saver.restore(sess,'net/my_net.ckpt')
        # 载入模型后的识别率
        print('载入后识别率',sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels}))

    结果:

    未载入识别率 0.098
    INFO:tensorflow:Restoring parameters from net/my_net.ckpt
    载入后识别率 0.9177
  • 相关阅读:
    git/github 常用操作
    Ubuntu sudoer文件改错补救方法!
    Linux Expect 用法
    Linux/Ubuntu sudo不用输入密码的方法
    CTest 简介
    Linux下命令行设置ip和掩码, 网关
    Ubuntu1804下安装gdb与使用
    Linux bash 文本处理命令awk,sed,grep 用法
    Yii 判断是不是post方式提交的数据
    VS2017 CMake配置
  • 原文地址:https://www.cnblogs.com/felixwang2/p/9190692.html
Copyright © 2011-2022 走看看