zoukankan      html  css  js  c++  java
  • Running Spark Streaming Jobs on a Kerberos-Enabled Cluster

    Use the following steps to run a Spark Streaming job on a Kerberos-enabled cluster.

    1. Select or create a user account to be used as principal.

      This should not be the kafka or spark service account.

    2. Generate a keytab for the user.
    3. Create a Java Authentication and Authorization Service (JAAS) login configuration file: for example, key.conf.
    4. Add configuration settings that specify the user keytab.

      The keytab and configuration files are distributed using YARN local resources. Because they reside in the current directory of the Spark YARN container, you should specify the location as ./v.keytab.

      The following example specifies keytab location ./v.keytab for principal vagrant@example.com:

      KafkaClient {
         com.sun.security.auth.module.Krb5LoginModule required
         useKeyTab=true
         keyTab="./v.keytab"
         storeKey=true
         useTicketCache=false
         serviceName="kafka"
         principal="vagrant@EXAMPLE.COM";
      };
    5. In your spark-submit command, pass the JAAS configuration file and keytab as local resource files, using the --filesoption, and specify the JAAS configuration file options to the JVM options specified for the driver and executor:
      spark-submit 
          --files key.conf#key.conf,v.keytab#v.keytab 
          --driver-java-options "-Djava.security.auth.login.config=./key.conf" 
          --conf "spark.executor.extraJavaOptions=-Djava.security.auth.login.config=./key.conf" 
      ...
    6. Pass any relevant Kafka security options to your streaming application.

      For example, the KafkaWordCount example accepts PLAINTEXTSASL as the last option in the command line:

      KafkaWordCount /vagrant/spark-examples.jar c6402:2181 abc ts 1 PLAINTEXTSASL
  • 相关阅读:
    ST L3 测试用例
    ST L2 系统测试流程
    ST L1 软件测试基础
    软件测试 Part5 使用测试文档
    软件测试 Part4 测试的补充
    Python Day37 python多线程标准模块concurrent.futures
    Python Day36 python多线程
    Python Day35进程池,回调函数
    Python Day34 python并发编程之多进程
    Python Day32 进程
  • 原文地址:https://www.cnblogs.com/felixzh/p/10558559.html
Copyright © 2011-2022 走看看