zoukankan      html  css  js  c++  java
  • Objective-C categories in static library

    https://stackoverflow.com/questions/2567498/objective-c-categories-in-static-library

    The answer from Vladimir is actually pretty good, however, I'd like to give some more background knowledge here. Maybe one day somebody finds my reply and may find it helpful.

    The compiler transforms source files (.c, .cc, .cpp, .m) into object files (.o). There is one object file per source file. Object files contain symbols, code and data. Object files are not usable directly by the operating system.

    Now when building a dynamic library (.dylib), a framework, a loadable bundle (.bundle) or an executable binary, these object files are linked together by the linker to produce something the operating system considers "usable", e.g. something it can directly load to a specific memory address.

    However when building a static library, all these object files are simply added to a big archive file, hence the extension of static libraries (.a for archive). So an .a file is nothing than an archive of object (.o) files. Think of a TAR archive or a ZIP archive without compression. It's just easier to copy a single .a file around than a whole bunch of .o files (similar to Java, where you pack .class files into a .jar archive for easy distribution).

    When linking a binary to a static library (= archive), the linker will get a table of all symbols in the archive and check which of these symbols are referenced by the binaries. Only the object files containing referenced symbols are actually loaded by the linker and are considered by the linking process. E.g. if your archive has 50 object files, but only 20 contain symbols used by the binary, only those 20 are loaded by the linker, the other 30 are entirely ignored in the linking process.

    This works quite well for C and C++ code, as these languages try to do as much as possible at compile time (though C++ also has some runtime-only features). Obj-C, however, is a different kind of language. Obj-C heavily depends on runtime features and many Obj-C features are actually runtime-only features. Obj-C classes actually have symbols comparable to C functions or global C variables (at least in current Obj-C runtime). A linker can see if a class is referenced or not, so it can determine a class being in use or not. If you use a class from an object file in a static library, this object file will be loaded by the linker because the linker sees a symbol being in use. Categories are a runtime-only feature, categories aren't symbols like classes or functions and that also means a linker cannot determine if a category is in use or not.

    If the linker loads an object file containing Obj-C code, all Obj-C parts of it are always part of the linking stage. So if an object file containing categories is loaded because any symbol from it is considered "in use" (be it a class, be it a function, be it a global variable), the categories are loaded as well and will be available at runtime. Yet if the object file itself is not loaded, the categories in it will not be available at runtime. An object file containing only categories is never loaded because it contains no symbols the linker would ever consider "in use". And this is the whole problem here.

    Several solutions have been proposed and now that you know how all this plays together, let's have another look on the proposed solution:

    1. One solution is to add -all_load to the linker call. What will that linker flag actually do? Actually it tells the linker the following "Load all object files of all archives regardless if you see any symbol in use or not'. Of course, that will work; but it may also produce rather big binaries.

    2. Another solution is to add -force_load to the linker call including the path to the archive. This flag works exactly like -all_load, but only for the specified archive. Of course this will work as well.

    3. The most popular solution is to add -ObjC to the linker call. What will that linker flag actually do? This flag tells the linker "Load all object files from all archives if you see that they contain any Obj-C code". And "any Obj-C code" includes categories. This will work as well and it will not force loading of object files containing no Obj-C code (these are still only loaded on demand).

    4. Another solution is the rather new Xcode build setting Perform Single-Object Prelink. What will this setting do? If enabled, all the object files (remember, there is one per source file) are merged together into a single object file (that is not real linking, hence the name PreLink) and this single object file (sometimes also called a "master object file") is then added to the archive. If now any symbol of the master object file is considered in use, the whole master object file is considered in use and thus all Objective-C parts of it are always loaded. And since classes are normal symbols, it's enough to use a single class from such a static library to also get all the categories.

    5. The final solution is the trick Vladimir added at the very end of his answer. Place a "fake symbol" into any source file declaring only categories. If you want to use any of the categories at runtime, make sure you somehow reference the fake symbol at compile time, as this causes the object file to be loaded by the linker and thus also all Obj-C code in it. E.g. it could be a function with an empty function body (which will do nothing when being called) or it could be a global variable accessed (e.g. a global int once read or once written, this is sufficient). Unlike all other solutions above, this solution shifts control about which categories are available at runtime to the compiled code (if it wants them to be linked and available, it accesses the symbol, otherwise it doesn't access the symbol and the linker will ignore it).

    That's all folks.

  • 相关阅读:
    javascript 压缩空格代码演示
    javascript 正则表达式代码
    数据筛选和排序
    实现win的on程序数据更新
    使用listview控件展示数据
    初始windows程序
    构建布局良好的windows程序
    ADO.NET访问数据库
    模糊查询
    基本查询
  • 原文地址:https://www.cnblogs.com/feng9exe/p/7050102.html
Copyright © 2011-2022 走看看