zoukankan      html  css  js  c++  java
  • Objective-C 小记(10)__weak

    本文使用的 runtime 版本为 objc4-706

    __weak 修饰的指针最重要的特性是其指向的对象销毁后,会自动置为 nil,这个特性的实现完全是依靠运行时的。实现思路是非常简单的,对于下面的语句来说:

    id __weak weakObj = strongObj;
    

    便是用 strongObj 当作 key,weakObj 当作 value 存入一个表里。当 strongObj 销毁时,从表里找到所有的 __weak 引用,将其置为 nil

    当然,实际的实现肯定是要比这要充斥着更多的细节。

    变量的创建和销毁

    还是上面那个例子,实际上编译器会进行一些变动:

    {
        id __weak weakObj = strongObj;
    }
    // 会变成
    {
        id __weak weakObj;
        objc_initWeak(&weakObj, strongObj);
        
        // 离开变量的范围,进行销毁
        objc_destroyWeak(&weakObj);
    }
    

    objc_initWeakobjc_destroyWeak 都可以在 NSObject.mm 文件中找到:

    id
    objc_initWeak(id *location, id newObj)
    {
        if (!newObj) {
            *location = nil;
            return nil;
        }
    
        return storeWeak<false/*old*/, true/*new*/, true/*crash*/>
            (location, (objc_object*)newObj);
    }
    
    void
    objc_destroyWeak(id *location)
    {
        (void)storeWeak<true/*old*/, false/*new*/, false/*crash*/>
            (location, nil);
    }
    

    可以看到都是对 storeWeak 函数模板的调用(为什么要使用模板呢?会更快吗?C++ 小白内心的问题…… )。

    赋值

    当已有的 __weak 变量被重新赋值时会怎么样呢?

    weakObj = anotherStrongObj;
    
    // 会变成下面这样
    objc_storeWeak(&weakObj, anotherStrongObj);
    

    它的实现如下:

    id
    objc_storeWeak(id *location, id newObj)
    {
        return storeWeak<true/*old*/, true/*new*/, true/*crash*/>
            (location, (objc_object *)newObj);
    }
    

    但实际上也还是对 storeWeak 函数模板的封装。

    storeWeak

    storeWeak 的实现还是有点长的,一点一点来分析:

    // Update a weak variable.
    // If HaveOld is true, the variable has an existing value 
    //   that needs to be cleaned up. This value might be nil.
    // If HaveNew is true, there is a new value that needs to be 
    //   assigned into the variable. This value might be nil.
    // If CrashIfDeallocating is true, the process is halted if newObj is 
    //   deallocating or newObj's class does not support weak references. 
    //   If CrashIfDeallocating is false, nil is stored instead.
    template <bool HaveOld, bool HaveNew, bool CrashIfDeallocating>
    static id 
    storeWeak(id *location, objc_object *newObj)
    {
        assert(HaveOld  ||  HaveNew);
        if (!HaveNew) assert(newObj == nil);
    
        Class previouslyInitializedClass = nil;
        id oldObj;
        SideTable *oldTable;
        SideTable *newTable;
    

    函数前的注释表明了三个模板参数的作用,当然在后面的代码里也能直观的看到。函数一开始进行了变量的声明,可以注意到 SideTable 这个类型,SideTable 是现在的运行时中用来存放引用计数和弱引用的结构体,它的结构是这样的(省略了结构体函数):

    struct SideTable {
        spinlock_t slock;
        RefcountMap refcnts;
        weak_table_t weak_table;
    }
    

    其中 slock 是一个自旋锁,用来对 SideTable 实例进行操作时的加锁。refcnts 则是存放引用计数的地方。weak_table 则是存放弱引用的地方(后面将详细分析 weak_table_t)。

    回到 storeWeak 函数:

        // Acquire locks for old and new values.
        // Order by lock address to prevent lock ordering problems. 
        // Retry if the old value changes underneath us.
     retry:
        if (HaveOld) {
            oldObj = *location;
            oldTable = &SideTables()[oldObj];
        } else {
            oldTable = nil;
        }
        if (HaveNew) {
            newTable = &SideTables()[newObj];
        } else {
            newTable = nil;
        }
    
        SideTable::lockTwo<HaveOld, HaveNew>(oldTable, newTable);
    
        if (HaveOld  &&  *location != oldObj) {
            SideTable::unlockTwo<HaveOld, HaveNew>(oldTable, newTable);
            goto retry;
        }
    

    这一段即获取 oldObjoldTablenewTable,并将获取的两个表上锁。注意到获取 oldTablenewTable 时,其实是用对象的地址当作 key 从 SideTables 获取的,SideTables 返回的就是一个哈希表,存储着若干个 SideTable,一般是 64 个。

        // Prevent a deadlock between the weak reference machinery
        // and the +initialize machinery by ensuring that no 
        // weakly-referenced object has an un-+initialized isa.
        if (HaveNew  &&  newObj) {
            Class cls = newObj->getIsa();
            if (cls != previouslyInitializedClass  &&  
                !((objc_class *)cls)->isInitialized()) 
            {
                SideTable::unlockTwo<HaveOld, HaveNew>(oldTable, newTable);
                _class_initialize(_class_getNonMetaClass(cls, (id)newObj));
    
                // If this class is finished with +initialize then we're good.
                // If this class is still running +initialize on this thread 
                // (i.e. +initialize called storeWeak on an instance of itself)
                // then we may proceed but it will appear initializing and 
                // not yet initialized to the check above.
                // Instead set previouslyInitializedClass to recognize it on retry.
                previouslyInitializedClass = cls;
    
                goto retry;
            }
        }
    

    上面这一段代码也有着很好的注释,就是要确保对象的类已经走过 +initialize 流程了。

        // Clean up old value, if any.
        if (HaveOld) {
            weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
        }
    
        // Assign new value, if any.
        if (HaveNew) {
            newObj = (objc_object *)weak_register_no_lock(&newTable->weak_table, 
                                                          (id)newObj, location, 
                                                          CrashIfDeallocating);
            // weak_register_no_lock returns nil if weak store should be rejected
    
            // Set is-weakly-referenced bit in refcount table.
            if (newObj  &&  !newObj->isTaggedPointer()) {
                newObj->setWeaklyReferenced_nolock();
            }
    
            // Do not set *location anywhere else. That would introduce a race.
            *location = (id)newObj;
        }
        else {
            // No new value. The storage is not changed.
        }
        
        SideTable::unlockTwo<HaveOld, HaveNew>(oldTable, newTable);
    
        return (id)newObj;
    }
    

    最后一段的逻辑也是很清晰的。首先,如果有旧的值(HaveOld),则使用 weak_unregister_no_lock 函数将其从 oldTableweak_table 中移除。其次,如果有新的值(HaveNew),则使用 weak_register_no_lock 函数将其注册到 newTableweak_table 中,并使用 setWeaklyReferenced_nolock 函数将对象标记为被弱引用过。

    storeWeak 的实现就告一段落了,其重点就在 weak_register_no_lockweak_unregister_no_lock 函数上。

    weak_table_t

    在分析这两个函数之前,先看看 weak_table_t 是一个怎么样的结构:

    /**
     * The global weak references table. Stores object ids as keys,
     * and weak_entry_t structs as their values.
     */
    struct weak_table_t {
        weak_entry_t *weak_entries;
        size_t    num_entries;
        uintptr_t mask;
        uintptr_t max_hash_displacement;
    };
    
    • weak_entries 便是存放弱引用的数组;
    • num_entries 是存放的 weak_entry_t 条目的数量;
    • mask 则是动态申请的弱引用数组 weak_entries 长度减 1 的值,用来对哈希后的值取余和记录数组大小;
    • max_hash_displacement 则是哈希碰撞后最大的位移值。

    其实 weak_table_t 就是一个动态增长的哈希表。

    继续看看其相关的操作,首先是对整个表的扩大:

    #define TABLE_SIZE(entry) (entry->mask ? entry->mask + 1 : 0)
    
    // Grow the given zone's table of weak references if it is full.
    static void weak_grow_maybe(weak_table_t *weak_table)
    {
        size_t old_size = TABLE_SIZE(weak_table);
    
        // Grow if at least 3/4 full.
        if (weak_table->num_entries >= old_size * 3 / 4) {
            weak_resize(weak_table, old_size ? old_size*2 : 64);
        }
    }
    

    可以看到,当 weak_table 里的弱引用条目达到它容量的四分之三时,便会将容量拓展为两倍。值得注意的是第一次拓展也就是是 mask 为 0 的情况,初始值是 64。实际对弱引用表大小的操作则交给了 weak_resize 函数。

    除了扩大,当然也还有缩小:

    // Shrink the table if it is mostly empty.
    static void weak_compact_maybe(weak_table_t *weak_table)
    {
        size_t old_size = TABLE_SIZE(weak_table);
    
        // Shrink if larger than 1024 buckets and at most 1/16 full.
        if (old_size >= 1024  && old_size / 16 >= weak_table->num_entries) {
            weak_resize(weak_table, old_size / 8);
            // leaves new table no more than 1/2 full
        }
    }
    

    缩小的话则是需要表本身大于等于 1024 并且存放了不足十六分之一的条目时,直接缩小 8 倍。实际工作也是交给了 weak_resize 函数:

    static void weak_resize(weak_table_t *weak_table, size_t new_size)
    {
        size_t old_size = TABLE_SIZE(weak_table);
    
        weak_entry_t *old_entries = weak_table->weak_entries;
        weak_entry_t *new_entries = (weak_entry_t *)
            calloc(new_size, sizeof(weak_entry_t));
    
        weak_table->mask = new_size - 1;
        weak_table->weak_entries = new_entries;
        weak_table->max_hash_displacement = 0;
        weak_table->num_entries = 0;  // restored by weak_entry_insert below
        
        if (old_entries) {
            weak_entry_t *entry;
            weak_entry_t *end = old_entries + old_size;
            for (entry = old_entries; entry < end; entry++) {
                if (entry->referent) {
                    weak_entry_insert(weak_table, entry);
                }
            }
            free(old_entries);
        }
    }
    

    weak_resize 函数的过程就是新建一个数组,将老数组里的值使用 weak_entry_insert 函数添加进去,注意到代码中间 mask 在这里被赋值为新数组的大小减去 1,max_hash_displacementnum_entries 也都清零了,因为 weak_entry_insert 函数会对这两个值进行操作。接着对 weak_entry_insert 函数进行分析:

    /** 
     * Add new_entry to the object's table of weak references.
     * Does not check whether the referent is already in the table.
     */
    static void weak_entry_insert(weak_table_t *weak_table, weak_entry_t *new_entry)
    {
        weak_entry_t *weak_entries = weak_table->weak_entries;
        assert(weak_entries != nil);
    
        size_t begin = hash_pointer(new_entry->referent) & (weak_table->mask);
        size_t index = begin;
        size_t hash_displacement = 0;
        while (weak_entries[index].referent != nil) {
            index = (index+1) & weak_table->mask;
            if (index == begin) bad_weak_table(weak_entries);
            hash_displacement++;
        }
    
        weak_entries[index] = *new_entry;
        weak_table->num_entries++;
    
        if (hash_displacement > weak_table->max_hash_displacement) {
            weak_table->max_hash_displacement = hash_displacement;
        }
    }
    

    这个函数就是个很正常的哈希表插入的过程,hash_pointer 函数是对指针地址进行哈希,哈希后的值之所以要和 mask 进行 & 操作,是因为弱引用表的大小永远是 2 的幂(一开始是 64,之后不断乘以 2),mask 则是大小减去 1 即为一个 0b111...11 这么一个数,和它进行 & 运算相当于取余。hash_displacement 则是记录了哈希相撞后偏移的大小。

    既然有插入,也就有删除:

    /**
     * Remove entry from the zone's table of weak references.
     */
    static void weak_entry_remove(weak_table_t *weak_table, weak_entry_t *entry)
    {
        // remove entry
        if (entry->out_of_line()) free(entry->referrers);
        bzero(entry, sizeof(*entry));
    
        weak_table->num_entries--;
    
        weak_compact_maybe(weak_table);
    }
    

    很直接的清零 entry,并给 weak_tablenum_entries 减 1,最后检查看是否需要缩小。

    最后还有一个根据指定对象查找存在条目的函数:

    /** 
     * Return the weak reference table entry for the given referent. 
     * If there is no entry for referent, return NULL. 
     * Performs a lookup.
     *
     * @param weak_table 
     * @param referent The object. Must not be nil.
     * 
     * @return The table of weak referrers to this object. 
     */
    static weak_entry_t *
    weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
    {
        assert(referent);
    
        weak_entry_t *weak_entries = weak_table->weak_entries;
    
        if (!weak_entries) return nil;
    
        size_t begin = hash_pointer(referent) & weak_table->mask;
        size_t index = begin;
        size_t hash_displacement = 0;
        while (weak_table->weak_entries[index].referent != referent) {
            index = (index+1) & weak_table->mask;
            if (index == begin) bad_weak_table(weak_table->weak_entries);
            hash_displacement++;
            if (hash_displacement > weak_table->max_hash_displacement) {
                return nil;
            }
        }
        
        return &weak_table->weak_entries[index];
    }
    

    也是很正常的哈希表套路。

    weak_entry_t

    那弱引用是怎么存储的呢,继续分析 weak_entry_t

    #define WEAK_INLINE_COUNT 4
    
    #define REFERRERS_OUT_OF_LINE 2
    
    struct weak_entry_t {
        DisguisedPtr<objc_object> referent;
        union {
            struct {
                weak_referrer_t *referrers;
                uintptr_t        out_of_line_ness : 2;
                uintptr_t        num_refs : PTR_MINUS_2;
                uintptr_t        mask;
                uintptr_t        max_hash_displacement;
            };
            struct {
                // out_of_line_ness field is low bits of inline_referrers[1]
                weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];
            };
        };
    
        bool out_of_line() {
            return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
        }
    
        weak_entry_t& operator=(const weak_entry_t& other) {
            memcpy(this, &other, sizeof(other));
            return *this;
        }
    
        weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
            : referent(newReferent)
        {
            inline_referrers[0] = newReferrer;
            for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
                inline_referrers[i] = nil;
            }
        }
    };
    

    首先 DisguisedPtr<T> 类型和 T* 的行为是一模一样的,这个类型存在的目的是为了躲过内存泄漏工具的检查(注释原文:「DisguisedPtr<T> acts like pointer type T*, except the stored value is disguised to hide it from tools like leaks.」)。所以 DisguisedPtr<objc_object> referent 可以看作是 objc_object *referent

    referent 这个指针记录的便是被弱引用的对象。接下来的联合里有两种结构体,先分析第一种:

    • referrersreferrers 是一个 weak_referrer_t 类型的数组,用来存放弱引用变量的地址,weak_referrer_t 的定义是这样的:typedef DisguisedPtr<objc_object *> weak_referrer_t;
    • out_of_line_ness:2 bit 标记位,用来确定联合里的内存是第一个结构体还是第二个结构体;
    • num_refsPTR_MINUS_2 便是字长减去 2 位,和 out_of_line_ness 一起组成一个字长,用来存储 referrers 的大小;
    • maskmax_hash_displacement:和前面分析的一样,做哈希表用到的东西。

    可以发现第一种结构体也是一个哈希表,第二种结构体则是一个和第一种结构体一样大的数组,所谓的 inline 存储。存放思路则是首先 inline 存储,当超过 WEAK_INLINE_COUNT 也就是 4 时,再变成第一种的动态哈希表存储。代码下方的构造函数便体现了这个思路。

    可以注意到 weak_entry_t 重载了赋值操作符,将赋值变成了一个拷贝内存的操作。

    相关操作也是和上面 weak_table_t 的类似,只不过加上了 inline 存储情况的变化,就不详细分析了。

    weak_register_no_lock

    开始分析 weak_register_no_lock 函数:

    /** 
     * Registers a new (object, weak pointer) pair. Creates a new weak
     * object entry if it does not exist.
     * 
     * @param weak_table The global weak table.
     * @param referent The object pointed to by the weak reference.
     * @param referrer The weak pointer address.
     */
    id 
    weak_register_no_lock(weak_table_t *weak_table, id referent_id, 
                          id *referrer_id, bool crashIfDeallocating)
    {
        objc_object *referent = (objc_object *)referent_id;
        objc_object **referrer = (objc_object **)referrer_id;
    
        if (!referent  ||  referent->isTaggedPointer()) return referent_id;
    

    第一段,约等于什么都没干。referent 是被弱引用的对象,referrer 则是弱引用变量的地址。

        // ensure that the referenced object is viable
        bool deallocating;
        if (!referent->ISA()->hasCustomRR()) {
            deallocating = referent->rootIsDeallocating();
        }
        else {
            BOOL (*allowsWeakReference)(objc_object *, SEL) = 
                (BOOL(*)(objc_object *, SEL))
                object_getMethodImplementation((id)referent, 
                                               SEL_allowsWeakReference);
            if ((IMP)allowsWeakReference == _objc_msgForward) {
                return nil;
            }
            deallocating =
                ! (*allowsWeakReference)(referent, SEL_allowsWeakReference);
        }
    

    这一段很有意思,如果对象没有自定义的内存管理方法(hasCustomRR),则将 deallocating 变量赋值为 rootIsDeallocating 也就是是否正在销毁。但是如果有自定义的内存管理方法的话,发送的是
    allowsWeakReference 这个消息,即是否允许弱引用。不管怎么样,我们得到了一个 deallocating 变量。

        if (deallocating) {
            if (crashIfDeallocating) {
                _objc_fatal("Cannot form weak reference to instance (%p) of "
                            "class %s. It is possible that this object was "
                            "over-released, or is in the process of deallocation.",
                            (void*)referent, object_getClassName((id)referent));
            } else {
                return nil;
            }
        }
    

    从上面一段可以知道,deallocatingtrue 的话肯定是有问题的,所以这一段处理一下。

        // now remember it and where it is being stored
        weak_entry_t *entry;
        if ((entry = weak_entry_for_referent(weak_table, referent))) {
            append_referrer(entry, referrer);
        } 
        else {
            weak_entry_t new_entry(referent, referrer);
            weak_grow_maybe(weak_table);
            weak_entry_insert(weak_table, &new_entry);
        }
    
        // Do not set *referrer. objc_storeWeak() requires that the 
        // value not change.
    
        return referent_id;
    }
    

    最后一段终于做了正事了!首先先用 weak_entry_for_referent 函数搜索对象是否已经有了 weak_entry_t 类型的条目,有的话则使用 append_referrer 添加一个变量位置进去,没有的话则新建一个 weak_entry_t 条目,使用 weak_grow_maybe 函数扩大(如果需要的话)弱引用表的大小,并使用 weak_entry_insert 将弱引用插入表中。

    weak_unregister_no_lock

    接下来是 weak_unregister_no_lock 函数:

    void
    weak_unregister_no_lock(weak_table_t *weak_table, id referent_id, 
                            id *referrer_id)
    {
        objc_object *referent = (objc_object *)referent_id;
        objc_object **referrer = (objc_object **)referrer_id;
    
        weak_entry_t *entry;
    
        if (!referent) return;
    
        if ((entry = weak_entry_for_referent(weak_table, referent))) {
            remove_referrer(entry, referrer);
            bool empty = true;
            if (entry->out_of_line()  &&  entry->num_refs != 0) {
                empty = false;
            }
            else {
                for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
                    if (entry->inline_referrers[i]) {
                        empty = false; 
                        break;
                    }
                }
            }
    
            if (empty) {
                weak_entry_remove(weak_table, entry);
            }
        }
    
        // Do not set *referrer = nil. objc_storeWeak() requires that the 
        // value not change.
    }
    

    主要功能实现思路很简单,使用 weak_entry_for_referent 函数找到对应的弱引用条目,并用 remove_referrer 将对应的弱引用变量位置从中移除。最后判断条目是否为空,为空则使用 weak_entry_remove 将其从弱引用表中移除。

    自动置为 nil

    对象销毁后,弱引用变量被置为 nil 是因为在对象 dealloc 的过程中调用了 weak_clear_no_lock 函数:

    /** 
     * Called by dealloc; nils out all weak pointers that point to the 
     * provided object so that they can no longer be used.
     * 
     * @param weak_table 
     * @param referent The object being deallocated. 
     */
    void 
    weak_clear_no_lock(weak_table_t *weak_table, id referent_id) 
    {
        objc_object *referent = (objc_object *)referent_id;
    
        weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
        if (entry == nil) {
            /// XXX shouldn't happen, but does with mismatched CF/objc
            //printf("XXX no entry for clear deallocating %p
    ", referent);
            return;
        }
    

    首先初始化一下,获取到弱引用条目,顺便处理没有弱引用的情况。

        // zero out references
        weak_referrer_t *referrers;
        size_t count;
        
        if (entry->out_of_line()) {
            referrers = entry->referrers;
            count = TABLE_SIZE(entry);
        } 
        else {
            referrers = entry->inline_referrers;
            count = WEAK_INLINE_COUNT;
        }
    

    获取弱引用变量位置数组和个数。

        for (size_t i = 0; i < count; ++i) {
            objc_object **referrer = referrers[i];
            if (referrer) {
                if (*referrer == referent) {
                    *referrer = nil;
                }
                else if (*referrer) {
                    _objc_inform("__weak variable at %p holds %p instead of %p. "
                                 "This is probably incorrect use of "
                                 "objc_storeWeak() and objc_loadWeak(). "
                                 "Break on objc_weak_error to debug.
    ", 
                                 referrer, (void*)*referrer, (void*)referent);
                    objc_weak_error();
                }
            }
        }
        
        weak_entry_remove(weak_table, entry);
    }
    

    循环将它们置为 nil,最后移除整个弱引用条目。

    访问弱引用

    在访问一个弱引用时,ARC 会对其进行一些操作:

    obj = weakObj;
    
    // 会变成
    objc_loadWeakRetained(&weakObj);
    obj = weakObj;
    objc_release(weakObj);
    

    objc_loadWeakRetained 函数的主要作用就是调用了 rootTryRetain 函数:

    ALWAYS_INLINE bool 
    objc_object::rootTryRetain()
    {
        return rootRetain(true, false) ? true : false;
    }
    

    实际上就是尝试对引用计数加 1,让弱引用对象在使用时不会被释放掉。

    有关 rootRetain 的实现:《Objective-C 小记(7)retain & release》

    总结

    存放一个弱引用还真是哈希了很多次:

    1. SideTable 哈希一次,这里分开来应该是为了性能原因;
    2. weak_table_t 哈希一次;
    3. weak_entry_t 哈希一次。

    对于开销,直观感受上也并没有什么很大开销,想用就用呗……



    作者:KylinRoc
    链接:https://www.jianshu.com/p/eff6b9443800
    來源:简书
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
  • 相关阅读:
    python的xpinyin模块:汉字转拼音
    中文报错SyntaxError: Non-UTF-8 code starting with 'xe6' in file
    "底层逻辑”是什么意思?
    【Golang】关于Go中logrus的用法
    【Golang】 关于Go语言中的锁
    【Golang】Go 通过结构(struct) 实现接口(interface)
    【Golang】Go语言之log的使用
    【Golang】Go中时间(time)的用法以及gorm处理时间戳
    【Golang】Go中三个点(...)用法
    一文彻底掌握Apache Hudi异步Clustering部署
  • 原文地址:https://www.cnblogs.com/feng9exe/p/8401354.html
Copyright © 2011-2022 走看看