zoukankan      html  css  js  c++  java
  • 平衡二叉树(AVL树)

    3、旋转

    在进行插入和删除之前需要先了解AVL树的旋转操作。旋转操作主要包括LL(左左)旋转、LR(左右)旋转、RR(右右)旋转、RL(右左)旋转,LL旋转与RR旋转对称,LR旋转与RL旋转对称。旋转操作是在插入结点或删除结点导致原AVL树不平衡时进行的。我的理解是当二叉树失衡的原因出现在“最低失衡根结点左子树的左子树”(所谓“最低失衡根结点”,则是从新增结点开始向根部回溯,所遇到的第一个失衡的根节点)时,则使用LL旋转来调整;当失衡出现在“最低失衡根节点左子树的右子树”,则使用LR旋转调整;RR旋转,RL旋转同理。具体的定义和操作可以看skywang12345的的文章:AVL树(二)之 C++的实现(我的这篇文章就是基于此文章,为了加深印象,在这里把实现再写一遍,加一些自己的理解)。

    3.1 LL旋转

    如上图所示,找到“最低失衡根结点”,上图是结点5,二叉树失衡的原因是因为结点1的存在,而结点1位于结点5“左子树的左子树”,所以要使用LL旋转来调节,只需一次旋转即可达到平衡。具体的方法是:LL旋转的对象是“最低失衡根结点”,也就是结点5,找到5的左孩子3,将3的右孩子4变成5的左孩子,最后将5变成3的右孩子,调整后的AVL树如下所示:

    具体代码:

    复制代码
    
    
    复制代码

     3.2 RR旋转

    RR旋转与LL旋转对称。

    如上图所示,“最低失衡根结点”是结点2,二叉树的失衡是结点6导致的,而结点6位于结点2“右子树的右子树”,所以要使用RR旋转来调节,只需一次旋转即可达到平衡。方法与LL旋转类似:RR旋转的对象是“最低失衡根结点”,这里是结点2,找到2的右孩子4,将4的左孩子3变成2的右孩子,最后将2变成4的右孩子,旋转后的结果如下图所示:

    RR旋转代码如下:

    复制代码
    
    
    复制代码

     3.3 LR旋转

    LL旋转和RR旋转只需一次旋转即可达到平衡,而LR旋转和RL旋转需两次旋转才能达到平衡。

     如上图所示,“最低失衡根结点”为结点5,二叉树失衡是因为结点3的存在,结点3位于结点5“左子树的右子树”,所以使用LR旋转来调节。方法:(1)先对最低失衡根结点的左孩子(结点2)进行RR旋转;(2)再对最低失衡根结点(结点5)进行LL旋转。下图演示了调整过程。

    LR代码如下:

    复制代码
    
    
    复制代码

    3.4 RL旋转

    RL旋转与LR旋转对称,先LL旋转,在RR旋转。

    分析过程与LR相似。旋转步骤:(1)先对最低失衡结点右孩子(结点5)LL旋转;(2)在对最低失衡结点(结点2)RR旋转。旋转过程如下:

    RL实现代码:

    复制代码
    
    
    复制代码

    4、插入结点与删除结点

    https://www.cnblogs.com/sench/p/7786718.html

  • 相关阅读:
    HDU 1058 Humble Numbers
    HDU 1421 搬寝室
    HDU 1176 免费馅饼
    七种排序算法的实现和总结
    算法纲要
    UVa401 回文词
    UVa 10361 Automatic Poetry
    UVa 537 Artificial Intelligence?
    UVa 409 Excuses, Excuses!
    UVa 10878 Decode the tape
  • 原文地址:https://www.cnblogs.com/feng9exe/p/9970522.html
Copyright © 2011-2022 走看看