zoukankan      html  css  js  c++  java
  • 深度学习3线性回归,逻辑回归

    为什么采用平方和作为错误估计函数,不是不是绝对值或者4次方之类。

    假设根据特征的预测结果跟实际结果之间有误差,误差为clip_image002,那么真实值clip_image004跟预测值clip_image006之间有如下关系:

    clip_image008

    这个i指的是每一个训练数据。

    对于误差,前面提到过图像产生的误差,根据中心极限定理,一般的误差服从正态分布。

    假设误差服从clip_image010clip_image012,则

    clip_image014

    即:clip_image016

    上式是θ是参数,是y在x下的条件概率。

    这个也就转化成了,我们已经知道了试验结果,就是知道了一个样本的结果概率,我们希望的就是这些概率值越大越好,那也就是概率积,也就是求最大似然估计,就是求概率积最大的时候那个参数θ。即求:

    clip_image018最大时候的θ

    对于求这个我们一般取对数,即:

    clip_image020

    这样,式子里面含有了clip_image022,也就是这个越小,clip_image024越大,也就是clip_image022[1]最小的时候,clip_image024[1]最大。这样也就说明了为什么采用平方和的原因。

    下面讲的是局部加权线性回归。

    即:

    clip_image026

    clip_image028

    x是要预测的特征,也就是样本离x越近,则权重越大,越远,权重越小,具体没有更深入理解。

  • 相关阅读:
    Python iter() 函数
    Python file() 函数
    Python bin() 函数
    QTP自动化测试-打开运行报告
    mysql-笔记-数据类型
    mysql-笔记--增删改查
    mysql-笔记-命名、索引规范
    Navicat for MySQL 安装和破解
    mysql client--笔记-修改密码-登录-查看数据库-创建数据库
    安装mysql
  • 原文地址:https://www.cnblogs.com/fengbing/p/3080679.html
Copyright © 2011-2022 走看看