zoukankan      html  css  js  c++  java
  • Which Numbers are the Sum of Two Squares?

    The main goal of today's lecture is to prove the following theorem.

    Theorem 1.1   A number $ n$ is a sum of two squares if and only if all prime factors of $ n$ of the form $ 4m+3$ have even exponent in the prime factorization of $ n$.

    Before tackling a proof, we consider a few examples.

    Example 1.2  

    • $ 5 = 1^2 + 2^2$.
    • $ 7$ is not a sum of two squares.
    • $ 2001$ is divisible by $ 3$ because $ 2+1$ is, but not by $ 9$ since $ 2+1$ is not, so $ 2001$ is not a sum of two squares.
    • $ 2/cdot 3^4/cdot 5/cdot 7^2/cdot 13$ is a sum of two squares.
    • $ 389$ is a sum of two squares, since $ 389/equiv 1/pmod{4}$ and $ 389$ is prime.
    • $ 21=3/cdot 7$ is not a sum of two squares even though $ 21/equiv 1/pmod{4}$.

    In preparation for the proof of Theorem 1.1, we recall a result that emerged when we analyzed how partial convergents of a continued fraction converge.

    Lemma 1.3   If $ x/in/mathbb{R}$ and $ n/in/mathbb{N}$, then there is a fraction $ /displaystyle /frac{a}{b}$ in lowest terms such that $ 0<b/leq n$ and

    $/displaystyle /left/vert x - /frac{a}{b} /right/vert /leq /frac{1}{b(n+1)}.$

    Proof. Let $ [a_0,a_1,/ldots]$ be the continued fraction expansion of $ x$. As we saw in the proof of Theorem 2.3 in Lecture 18, for each $ m$

    $/displaystyle /left/vert x - /frac{p_m}{q_m}/right/vert
< /frac{1}{q_m /cdot q_{m+1}}.
$

    Since $ q_{m+1}$ is always at least $ 1$ bigger than $ q_m$ and $ q_0=1$, either there exists an $ m$ such that $ q_m/leq n < q_{m+1}$, or the continued fraction expansion of $ x$ is finite and $ n$ is larger than the denominator of the rational number $ x$. In the first case,

    $/displaystyle /left/vert x - /frac{p_m}{q_m}/right/vert
< /frac{1}{q_m /cdot q_{m+1}}
/leq /frac{1}{q_m /cdot (n+1)},$

    so $ /displaystyle /frac{a}{b} = /frac{p_m}{q_m}$ satisfies the conclusion of the lemma. In the second case, just let $ /displaystyle /frac{a}{b} = x$.

    $ /qedsymbol$

    Definition 1.4   A representation $ n=x^2 + y^2$ is primitive if $ /gcd(x,y)=1$.

    Lemma 1.5   If $ n$ is divisible by a prime $ p$ of the form $ 4m+3$, then $ n$ has no primitive representations.

    Proof. If $ n$ has a primitive representation, $ n=x^2 + y^2$, then

    $/displaystyle p /mid x^2 + y^2$    and $/displaystyle /quad /gcd(x,y)=1,
$

    so $ p/nmid x$ and $ p/nmid y$. Thus $ x^2 + y^2 /equiv 0/pmod{p}$ so, since $ /mathbb{Z}/p/mathbb{Z}$ is a field we can divide by $ y^2$ and see that

    $/displaystyle (x/y)^2 /equiv -1/pmod{p}.
$

    Thus the quadratic residue symbol $ /left(/frac{-1}{p}/right)$ equals $ +1$. However,

    $/displaystyle /left(/frac{-1}{p}/right) = (-1)^{/frac{p-1}{2}} = (-1)^/frac{4m+3-1}{2} = (-1)^{2m+1} = -1.
$

    $ /qedsymbol$

    Proof. [Proof of Theorem 1.1] $ /left(/Longrightarrow/right)$ Suppose that $ p$ is of the form $ 4m+3$, that $ p^r/mid/mid n$ (exactly divides) with $ r$ odd, and that $ n=x^2 + y^2$. Letting $ d=/gcd(x,y)$, we have

    $/displaystyle x = dx', /quad y = dy', /quad n = d^2 n'
$

    with $ /gcd(x',y')=1$ and

    $/displaystyle (x')^2 + (y')^2 = n'.
$

    Because $ r$ is odd, $ p/mid n'$, so Lemma 1.5 implies that $ /gcd(x',y')>1$, a contradiction.

    $ /left(/Longleftarrow/right)$ Write $ n=n_1^2 n_2$ where $ n_2$ has no prime factors of the form $ 4m+3$. It suffices to show that $ n_2$ is a sum of two squares. Also note that

    $/displaystyle (x_1^2 + y_1^2)(x_2^2+y_2^2) = (x_1x_2+y_1y_2)^2 + (x_1y_2-x_2y_1)^2,
$

    so a product of two numbers that are sums of two squares is also a sum of two squares.1Also, the prime $ 2$ is a sum of two squares. It thus suffices to show that if $ p$ is a prime of the form $ 4m+1$, then $ p$ is a sum of two squares.

    Since

    $/displaystyle (-1)^{/frac{p-1}{2}} = (-1)^{/frac{4m+1-1}{2}} = +1,
$

    $ -1$ is a square modulo $ p$; i.e., there exists $ r$ such that $ r^2/equiv -1/pmod{p}$. Taking $ n=/lfloor /sqrt{p}/rfloor$ in Lemma 1.3 we see that there are integers $ a, b$ such that $ 0<b</sqrt{p}$ and

    $/displaystyle /left/vert -/frac{r}{p} - /frac{a}{b}/right/vert /leq/frac{1}{b(n+1)} < /frac{1}{b/sqrt{p}}.
$

    If we write

    $/displaystyle c = rb + pa
$

    then

    $/displaystyle /vert c/vert < /frac{pb}{b/sqrt{p}} = /frac{p}{/sqrt{p}} = /sqrt{p}
$

    and

    $/displaystyle 0 < b^2 + c^2 < 2p.
$

    But $ c /equiv rb/pmod{p}$, so

    $/displaystyle b^2 + c^2 /equiv b^2 + r^2 b^2 /equiv b^2(1+r^2) /equiv 0/pmod{p}.
$

    Thus $ b^2 + c^2 = p$.
  • 相关阅读:
    Flutter form 的表单 input
    FloatingActionButton 实现类似 闲鱼 App 底部导航凸起按钮
    Flutter 中的常见的按钮组件 以及自 定义按钮组件
    Drawer 侧边栏、以及侧边栏内 容布局
    AppBar 自定义顶部导航按钮 图标、颜色 以及 TabBar 定义顶部 Tab 切换 通过TabController 定义TabBar
    清空路由 路由替换 返回到根路由
    应对ubuntu linux图形界面卡住的方法
    [转] 一块赚零花钱
    [转]在树莓派上搭建LAMP服务
    ssh保持连接
  • 原文地址:https://www.cnblogs.com/fengju/p/6336252.html
Copyright © 2011-2022 走看看