zoukankan      html  css  js  c++  java
  • C#所有经典排序算法汇总

    1、选择排序 
    
    选择排序
    class SelectionSorter    
    {    
        private int min;    
        public void Sort(int[] arr)    
        {    
            for (int i = 0; i < arr.Length - 1; ++i)    
            {    
                min = i;    
                for (int j = i + 1; j < arr.Length; ++j)    
                {    
                    if (arr[j] < arr[min])    
                        min = j;    
                }    
                int t = arr[min];    
                arr[min] = arr[i];    
                arr[i] = t;    
            }    
        }    
    } 
    
    2、冒泡排序
    
    冒泡排序
    class EbullitionSorter    
    {    
        public void Sort(int[] arr)    
        {    
            int i, j, temp;    
            bool done = false;    
            j = 1;    
            while ((j < arr.Length) && (!done))//判断长度    
            {    
                done = true;    
                for (i = 0; i < arr.Length - j; i++)    
                {    
                    if (arr[i] > arr[i + 1])    
                    {    
                        done = false;    
                        temp = arr[i];    
                        arr[i] = arr[i + 1];//交换数据    
                        arr[i + 1] = temp;    
                    }    
                }    
                j++;    
            }    
        }      
    } 
    
    3、快速排序
    
    快速排序
    class QuickSorter    
    {    
        private void swap(ref int l, ref int r)    
        {    
            int temp;    
            temp = l;    
            l = r;    
            r = temp;    
        }    
        public void Sort(int[] list, int low, int high)    
        {    
            int pivot;//存储分支点    
            int l, r;    
            int mid;    
            if (high <= low)    
                return;    
            else if (high == low + 1)    
            {    
                if (list[low] > list[high])    
                    swap(ref list[low], ref list[high]);    
                return;    
            }    
            mid = (low + high) >> 1;    
            pivot = list[mid];    
            swap(ref list[low], ref list[mid]);    
            l = low + 1;    
            r = high;    
            do   
            {    
            while (l <= r && list[l] < pivot)    
                l++;    
            while (list[r] >= pivot)    
                r--;    
                if (l < r)    
                    swap(ref list[l], ref list[r]);    
            } while (l < r);    
            list[low] = list[r];    
            list[r] = pivot;    
            if (low + 1 < r)    
                Sort(list, low, r - 1);    
            if (r + 1 < high)    
                Sort(list, r + 1, high);    
        }      
    }    
    
    4、插入排序 
    
    插入排序 
    public class InsertionSorter    
    {    
        public void Sort(int[] arr)    
        {    
            for (int i = 1; i < arr.Length; i++)    
            {    
                int t = arr[i];    
                int j = i;    
                while ((j > 0) && (arr[j - 1] > t))    
                {    
                    arr[j] = arr[j - 1];//交换顺序    
                    --j;    
                }    
                arr[j] = t;    
            }    
        }     
    }    
    
    5、希尔排序 
    
    希尔排序
    public class ShellSorter    
    {    
        public void Sort(int[] arr)    
        {    
            int inc;    
            for (inc = 1; inc <= arr.Length / 9; inc = 3 * inc + 1) ;    
            for (; inc > 0; inc /= 3)    
            {    
                for (int i = inc + 1; i <= arr.Length; i += inc)    
                {    
                    int t = arr[i - 1];    
                    int j = i;    
                    while ((j > inc) && (arr[j - inc - 1] > t))    
                    {    
                        arr[j - 1] = arr[j - inc - 1];//交换数据    
                        j -= inc;    
                    }    
                    arr[j - 1] = t;    
                }    
            }    
        }   
    }   
    
    6、归并排序
    
    归并排序
            /// <summary>
            /// 归并排序之归:归并排序入口
            /// </summary>
            /// <param name="data">无序的数组</param>
            /// <returns>有序数组</returns>
            /// <author>Lihua(www.zivsoft.com)</author>
            int[] Sort(int[] data)
            {
                //取数组中间下标
                int middle = data.Length / 2;
                //初始化临时数组let,right,并定义result作为最终有序数组
                int[] left = new int[middle], right = new int[middle], result = new int[data.Length];
                if (data.Length % 2 != 0)//若数组元素奇数个,重新初始化右临时数组
                {
                    right = new int[middle + 1];
                }
                if (data.Length <= 1)//只剩下1 or 0个元数,返回,不排序
                {
                    return data;
                }
                int i = 0, j = 0;
                foreach (int x in data)//开始排序
                {
                    if (i < middle)//填充左数组
                    {
                        left[i] = x;
                        i++;
                    }
                    else//填充右数组
                    {
                        right[j] = x;
                        j++;
                    }
                }
                left = Sort(left);//递归左数组
                right = Sort(right);//递归右数组
                result = Merge(left, right);//开始排序
                //this.Write(result);//输出排序,测试用(lihua debug)
                return result;
            }
            /// <summary>
            /// 归并排序之并:排序在这一步
            /// </summary>
            /// <param name="a">左数组</param>
            /// <param name="b">右数组</param>
            /// <returns>合并左右数组排序后返回</returns>
            int[] Merge(int[] a, int[] b)
            {
                //定义结果数组,用来存储最终结果
                int[] result = new int[a.Length + b.Length];
                int i = 0, j = 0, k = 0;
                while (i < a.Length && j < b.Length)
                {
                    if (a[i] < b[j])//左数组中元素小于右数组中元素
                    {
                        result[k++] = a[i++];//将小的那个放到结果数组
                    }
                    else//左数组中元素大于右数组中元素
                    {
                        result[k++] = b[j++];//将小的那个放到结果数组
                    }
                }
                while (i < a.Length)//这里其实是还有左元素,但没有右元素
                {
                    result[k++] = a[i++];
                }
                while (j < b.Length)//右右元素,无左元素
                {
                    result[k++] = b[j++];
                }
                return result;//返回结果数组
            }
    注:此算法由周利华提供(http://www.cnblogs.com/architect/archive/2009/05/06/1450489.html 
    )
    
    7、基数排序
    
    基数排序
            //基数排序
            public int[] RadixSort(int[] ArrayToSort, int digit)
            {   
                //low to high digit
                for (int k = 1; k <= digit; k++)
                {       
                    //temp array to store the sort result inside digit
                    int[] tmpArray = new int[ArrayToSort.Length]; 
                    //temp array for countingsort 
                    int[] tmpCountingSortArray = new int[10]{0,0,0,0,0,0,0,0,0,0};        
                    //CountingSort        
                    for (int i = 0; i < ArrayToSort.Length; i++)        
                    {           
                        //split the specified digit from the element 
                        int tmpSplitDigit = ArrayToSort[i]/(int)Math.Pow(10,k-1) - (ArrayToSort[i]/(int)Math.Pow(10,k))*10; 
                        tmpCountingSortArray[tmpSplitDigit] += 1; 
                    }         
                    for (int m = 1; m < 10; m++)      
                    {            
                        tmpCountingSortArray[m] += tmpCountingSortArray[m - 1];        
                    }        
                    //output the value to result      
                    for (int n = ArrayToSort.Length - 1; n >= 0; n--)       
                    {           
                        int tmpSplitDigit = ArrayToSort[n] / (int)Math.Pow(10,k - 1) - (ArrayToSort[n]/(int)Math.Pow(10,k)) * 10;           
                        tmpArray[tmpCountingSortArray[tmpSplitDigit]-1] = ArrayToSort[n];            
                        tmpCountingSortArray[tmpSplitDigit] -= 1;       
                    }        
                    //copy the digit-inside sort result to source array       
                    for (int p = 0; p < ArrayToSort.Length; p++)       
                    {           
                        ArrayToSort[p] = tmpArray[p];       
                    }   
                }    
                return ArrayToSort;
            }
    
    8、计数排序
    
    计数排序
    //计数排序
            /// <summary>
            /// counting sort
            /// </summary>
            /// <param name="arrayA">input array</param>
            /// <param name="arrange">the value arrange in input array</param>
            /// <returns></returns>
            public int[] CountingSort(int[] arrayA, int arrange)
            {    
                //array to store the sorted result,  
                //size is the same with input array. 
                int[] arrayResult = new int[arrayA.Length];    
                //array to store the direct value in sorting process   
                //include index 0;    
                //size is arrange+1;    
                int[] arrayTemp = new int[arrange+1];    
                //clear up the temp array    
                for(int i = 0; i <= arrange; i++)    
                {        
                    arrayTemp[i] = 0;  
                }    
                //now temp array stores the count of value equal  
                for(int j = 0; j < arrayA.Length; j++)   
                {       
                    arrayTemp[arrayA[j]] += 1;   
                }    
                //now temp array stores the count of value lower and equal  
                for(int k = 1; k <= arrange; k++)   
                {       
                    arrayTemp[k] += arrayTemp[k - 1];  
                }     
                //output the value to result    
                for (int m = arrayA.Length-1; m >= 0; m--)   
                {        
                    arrayResult[arrayTemp[arrayA[m]] - 1] = arrayA[m];    
                    arrayTemp[arrayA[m]] -= 1;  
                }    
                return arrayResult;
            }
    
    
    9、小根堆排序
    
    小根堆排序
    /// <summary>
            /// 小根堆排序
            /// </summary>
            /// <param name="dblArray"></param>
            /// <param name="StartIndex"></param>
            /// <returns></returns>
    
            private void HeapSort(ref double[] dblArray)
            {
                for (int i = dblArray.Length - 1; i >= 0; i--)
                {
                    if (2 * i + 1 < dblArray.Length)
                    {
                        int MinChildrenIndex = 2 * i + 1;
                        //比较左子树和右子树,记录最小值的Index
                        if (2 * i + 2 < dblArray.Length)
                        {
                            if (dblArray[2 * i + 1] > dblArray[2 * i + 2])
                                MinChildrenIndex = 2 * i + 2;
                        }
                        if (dblArray[i] > dblArray[MinChildrenIndex])
                        {
    
    
                            ExchageValue(ref dblArray[i], ref dblArray[MinChildrenIndex]);
                            NodeSort(ref dblArray, MinChildrenIndex);
                        }
                    }
                }
            }
    
            /// <summary>
            /// 节点排序
            /// </summary>
            /// <param name="dblArray"></param>
            /// <param name="StartIndex"></param>
    
            private void NodeSort(ref double[] dblArray, int StartIndex)
            {
                while (2 * StartIndex + 1 < dblArray.Length)
                {
                    int MinChildrenIndex = 2 * StartIndex + 1;
                    if (2 * StartIndex + 2 < dblArray.Length)
                    {
                        if (dblArray[2 * StartIndex + 1] > dblArray[2 * StartIndex + 2])
                        {
                            MinChildrenIndex = 2 * StartIndex + 2;
                        }
                    }
                    if (dblArray[StartIndex] > dblArray[MinChildrenIndex])
                    {
                        ExchageValue(ref dblArray[StartIndex], ref dblArray[MinChildrenIndex]);
                        StartIndex = MinChildrenIndex;
                    }
                }
            }
    
            /// <summary>
            /// 交换值
            /// </summary>
            /// <param name="A"></param>
            /// <param name="B"></param>
            private void ExchageValue(ref double A, ref double B)
            {
                double Temp = A;
                A = B;
                B = Temp;
            }
    

      

  • 相关阅读:
    Kafka发送和接收消息
    Kafka主题topic的增删改查
    Kafka启动
    synchronize底层实现原理
    StringBuffer和StringBuilder的区别
    常见的排序算法
    Redis缓存穿透,缓存击穿,缓存雪崩原理及解决方案
    Redis持久化策略
    redis支持的数据类型
    Bytes 类型
  • 原文地址:https://www.cnblogs.com/fengyeqingxiang/p/11021852.html
Copyright © 2011-2022 走看看